Материалы по тегу: cpu
08.09.2021 [19:00], Алексей Степин
Intel представила процессоры Xeon E-2300: Rocket Lake-E для серверов и рабочих станций начального уровняВ современном мире нагрузки на процессор год от года становятся всё сложнее и объёмнее, и не только крупные ЦОД нуждаются в архитектурных новшествах и новых наборах инструкций — малому бизнесу также требуются чипы нового поколения. Корпорация Intel ответила на это выпуском новых процессоров Xeon серии E-2300 и соответствующей платформы для них. Новинки стали быстрее и получили долгожданную поддержку PCI Express 4.0. Платформа Xeon E-2x00 не обновлялась достаточно давно: процессоры серии E-2200 были представлены ещё в 2019 году. На тот момент это был действительно прорыв в сегменте чипов Intel начального уровня — они впервые получили до 8 ядер Coffee Lake-S, а поддерживаемый объём памяти вырос с 64 до 128 Гбайт. Однако на сегодня таких возможностей уже может оказаться недостаточно: у E-2200 нет AVX-512 с VNNI, шина PCIe ограничена версией 3.0, а графическое ядро HD Graphics P630 и по меркам 2019 года быстрым назвать было нельзя. ![]() Источник изображений: Intel 10 новых процессоров Xeon E-2300, анонсированных Intel сегодня, должны заполнить пустующую нишу младших бизнес-решений. Нововведений в новой платформе не так уж мало, как может показаться на первый взгляд, ведь максимальное количество процессорных ядер у Xeon E-2300 по-прежнему восемь. Однако их максимальная частота выросла до 5,1 ГГц. Изменился процессорный разъём, теперь это LGA1200. ![]() Ядра 11-го поколения Rocket Lake-E (Cypress Cove) по-прежнему используют 14-нм техпроцесс, но оптимизированная микроархитектура позволила Xeon E-2300 быть быстрее соответствующих моделей предыдущего поколения на 17%, и это без учёта качественных нововведений — теперь у них есть AVX-512 с поддержкой инструкций VNNI, ускоряющих работу нейросетей. Нововведения касаются и вопросов информационной безопасности, в которой малый бизнес нуждается не меньше крупного. Как и «большие» Xeon на базе Ice Lake-SP, процессоры Xeon E-2300 получили «взрослую» поддержку защищённых анклавов SGX объёмом до 512 Мбайт, что существенно выше максимально доступных для прошлого поколения Xeon E 64 Мбайт. Максимальный объём памяти остался прежним, но скорость подросла — до 128 Гбайт DDR4-3200 ECC UDIMM в двух каналах (2DPC). Весьма важно также появление нового графического ядра с архитектурой Xe-LP. Конечно, высокой 3D-производительности от него ждать не стоит, но даже в этом оно на шаг впереди устаревшей архитектуры. К этому стоит добавить поддержку HDMI 2.0b и DP 1.4a, аппаратное декодирование 12-бит HEVC и VP9 и 10-бит AV1, а также кодирование в 8-бит AVC и 10-бит HEVC и VP9. Поддержка PCIe 4.0 пришла и на платформу Xeon E — новые процессоры могут предложить 20 линий PCIe 4.0, причём с поддержкой бифуркации. Ещё 24 линии PCIe 3.0 включает чипсет серии C250. В нём же имеется поддержка 8 портов SATA-3 и USB 3.2 Gen 2x2 — до трёх портов со скоростью 20 Гбит/с. Сетевая часть может быть реализована как на базе недорогих чипов i210, так и более производительных i225 (2,5 Гбит/с) или x550 (10 Гбит/с). ![]() В новой серии, как уже было сказано, представлено 10 процессоров, стоимостью от $182 до $539 и теплопакетами от 65 до 95 Вт. Лишь две младшие модели в списке не имеют поддержки Hyper-Threading. Все Xeon E-2300 располагают встроенным движком Manageability Engine 15 и поддержкой Intel Server Platform Services 6, облегчающей развёртывание и удалённое управление. Свои решения на базе новой платформы представят все ведущие производители серверного оборудования.
01.09.2021 [23:58], Андрей Галадей
Ветераны индустрии основали стартап Ventana для создания чиплетных серверных процессоров RISC-VСтартап Ventana Micro Systems, похоже, намерен перевернуть рынок серверов. Компания заявила о разработке высокопроизводительных процессоров на архитектуре RISC-V для центров обработки данных. Первые образцы фирменных CPU будут переданы клиентам во второй половине следующего года, а поставки начнутся в первой половине 2023 года. При этом процессоры получат чиплетную компоновку — различные модули и кристаллы на общей подложке. Основные процессорные ядра разработает сама Ventana, а вот остальные чиплеты будут создаваться под нужды определённых заказчиков. CPU-блоки будут иметь до 16 ядер, которые, как обещается, окажутся быстрее любых других реализаций RV64. Использование RISC-V позволит разрабатывать сверхмощные решения в рекордные сроки и без значительного бюджета. Ядра будут «выпекаться» на TSMC по 5-нм нормам, но для остальных блоков могут использовать другие техпроцессы и фабрики. ![]() Ventana будет следить за процессом их создания и упаковывать до полудюжины блоков в одну SoC. Для соединения ядер, кеша и других компонентов будет использоваться фирменная кеш-когерентная шина, которая обеспечит задержку порядка 8 нс и скорость передачи данных 16 Гбит/с на одну линию. Основными заказчиками, как ожидается, станут гиперскейлеры и крупные IT-игроки, которым часто требуется специализированное «железо» для ЦОД, 5G и т.д. Сегодня Ventana объявила о привлечении $38 млн в рамках раунда B. Общий же объём инвестиций составил $53 млн. Компания была основана в 2018 году. Однако это не совсем обычный стартап — и сами основатели, и команда являются настоящими ветеранами индустрии. Все они имеют многолетний опыт работы в Arm, AMD, Intel, Samsung, Xilinx и целом ряде других крупных компаний в области микроэлектроники. Часть из них уже имела собственные стартапы, которые были поглощены IT-гигантами.
24.08.2021 [04:11], Алексей Степин
IBM представила процессоры Telum: 8 ядер, 5+ ГГц, L2-кеш 256 Мбайт и ИИ-ускорительФинансовые организации, системы бронирования и прочие операторы бизнес-критичных задач любят «большие машины» IBM за надёжность. Недаром литера z в названии систем означает Zero Downtime — нулевое время простоя. На конференции Hot Chips 33 компания представила новое поколение z-процессоров, впервые в истории получившее собственное имя Telum (дротик в переводе с латыни). «Оружейное» название выбрано неспроста: в новой архитектуре IBM внедрила и новые, ранее не использовавшиеся в System z решения, предназначенные, в частности, для борьбы с фродом. Одни из ключевых заказчиков IBM — крупные финансовые корпорации и банки — давно ждали встроенных ИИ-средств, поскольку их системы должны обрабатывать тысячи и тысячи транзакций в секунду, и делать это максимально надёжно. Одной из целей при разработке Telum было внедрение инференс-вычислений, происходящих в реальном времени прямо в процессе обработки транзакции и без отсылки каких-либо данных за пределы системы. Поэтому инференс-ускоритель в Telum соединён напрямую с подсистемой кешей и использует все механизмы защиты процессора и памяти z/Architecture. И сам он тоже несёт ряд характерных для z подходов. Так, управляет работой акселератора отдельная «прошивка» (firmware), которую можно менять для оптимизации задач конкретного клиента. Она выполняется на одном из ядер и собственно ускорителе, который общается с данным ядром, и отвечает за обращения к памяти и кешу, безопасность и целостность данных и управление собственно вычислениями. Акселератор включает два вида движков. Первый имеет 128 SIMD-блоков для MAC-операций с FP16-данными и нужен для перемножения и свёртки матриц. У второго всего 32 SIMD-блока, но он может работать с FP16/FP32-данными и оптимизирован для функций активации сети и других, более комплексных задач. Дополняет их блок сверхбыстрой памяти (scratchpad) и «умный» IO-движок, ответственный за перемещение и подготовку данных, который умеет переформатировать их на лету. Scratchpad подключён к блоку, который подкачивает данные из L2-кеша и отправляет обратно результаты вычислений. IBM отдельно подчёркивает, что наличие выделенного ИИ-ускорителя позволяет параллельно использовать и обычные SIMD-блоки в ядрах, явно намекая на AVX-512 VNNI. Впрочем, в Sapphire Rapids теперь тоже есть отдельный AMX-блок в ядре, который однако скромнее по функциональности. Доступ к ускорителю возможен из пространства пользователя, в том числе в виртуализированном окружении. Для работы с новым ускорителем компания предлагает IBM Deep Learning Compiler, который поможет оптимизировать импортируемые ONNX-модели. Также есть готовая поддержка TensorFlow, IBM Snap ML и целого ряда популярных средств разработки. На процессор приходится один ИИ-ускоритель производительностью более 6 Тфлопс FP16. На тестовой RNN-модели для защиты от фрода чип может выполнять 116 тыс. инференс-операций с задержкой в пределах 1,1 мс, а для системы из 32 процессоров этот показатель составляет уже 3,6 млн инференс-операций, а латентность при этом возрастает всего лишь до 1,2 мс. Помимо ИИ-акселератора также имеется общий для всех ядер ускоритель (де-)компрессии (gzip) + у каждого ядра есть ещё и движок для CSMP. Ну и ускорители для сортировки и шифрования тоже никуда не делись. За надёжность отвечают сотни различных механизмов проверки и перепроверки работоспособности. Так, например, регистры и кеш дублируются, позволяя в случае сбоя ядра сделать его полную перезагрузку и продолжить выполнение задач ровно с того места, где оно прервалось. А для оперативной памяти, которая в обязательном порядке шифруется, используется режим Redundant Array of Memory (RAIM), своего рода RAID-массив, где одна кеш-линия «размазывается» сразу между восемью модулями. Telum, унаследовав многое от своего предшественника z15, всё же кардинально отличается от него. Процессор содержит восемь ядер с поддержкой «умного» глубокого внеочередного исполнения и SMT2, работающих на частоте более 5 ГГц. Каждому ядру полагается 32 Мбайт L2-кеша, так что на его фоне другие современные CPU выглядят блекло. Но не всё так просто. Между собой кеши общаются посредством двунаправленной кольцевой шины с пропускной способностью более 320 Гбайт/с, формируя таким образом виртуальный L3-кеш объёмом 256 Мбайт и со средней задержкой в 12 нс. Каждый чип Telum может содержать один (SCM) или два (DCM) процессора. А в одном узле может быть до четырёх чипов, то есть до восьми CPU, объединённых по схеме каждый-с-каждым с той же скоростью 320 Гбайт/с. Таким образом, в рамках узла формируется виртуальный L4-кеш объёмом уже 2 Гбайт. Плоская топология кешей, по данным IBM, обеспечивает новым процессорам меньшую латентность в сравнении с z15. Масштабирование возможно до 32 процессоров, но отдельные узлы связаны несколькими подключениями со скоростью «всего» 45 Гбайт/с в каждую сторону. В целом, IBM говорит о 40% прироста производительности в сравнении с z15 в пересчёте на сокет. Telum содержит 22 млрд транзисторов и имеет TDP на уровне 400 Вт в нормальном режиме работы. Процессор будет производиться на мощностях Samsung с использованием 7-нм техпроцесса EUV. Он станет основной для мейнфреймов IBM z16 и LinuxNOW. Программной платформой всё так же будут как традиционная z/OS, так и Linux.
19.08.2021 [16:00], Игорь Осколков
Intel представила Xeon Sapphire Rapids: четырёхкристалльная SoC, HBM-память, новые инструкции и ускорителиВ рамках Architecture Day компания Intel рассказала о грядущих серверных процессорах Sapphire Rapids, подтвердив большую часть опубликованной ранее информации и дополнив её некоторыми деталями. Intel позиционирует новинки как решение для более широкого круга задач и рабочих нагрузок, чем прежде, включая и популярные ныне микросервисы, контейнеризацию и виртуализацию. Компания обещает, что CPU будут сбалансированы с точки зрения вычислений, работой с памятью и I/O. Новые процессоры, наконец, получили чиплетную, или тайловую в терминологии Intel, компоновку — в состав SoC входят четыре «ядерных» тайла на техпроцессе Intel 7 (10 нм Enhanced SuperFIN). Каждый тайл объединён с соседом посредством EMIB. Их системные агенты, включающие общий на всех L3-кеш объём до 100+ Мбайт, образуют быструю mesh-сеть с задержкой порядка 4-8 нс в одну сторону. Со стороны процессор будет «казаться» монолитным. Каждые ядро или поток будут иметь свободный доступ ко всем ресурсам соседних тайлов, включая кеш, память, ускорители и IO-блоки. Потенциально такой подход более выгоден с точки зрения внутреннего обмена данными, чем в случае AMD с общим IO-блоком для всех чиплетов, которых в будущих EPYC будет уже 12. Но как оно будет на самом деле, мы узнаем только в следующем году — выход Sapphire Rapids запланирован на первый квартал 2022-го, а массовое производство будет уже во втором квартале. Ядра Sapphire Rapids базируются на микроархитектуре Golden Cove, которая стала шире, глубже и «умнее». Она же будет использована в высокопроизводительных ядрах Alder Lake, но в случае серверных процессоров есть некоторые отличия. Например, увеличенный до 2 Мбайт на ядро объём L2-кеша или новый набор инструкций AMX (Advanced Matrix Extension). Последний расширяет ИИ-функциональность CPU и позволяет проводить MAC-операции над матрицами, что характерно для такого рода нагрузок. Для AMX заведено восемь выделенных 2D-регистров объёмом по 1 Кбайт каждый (шестнадцать 64-байт строк). Отдельный аппаратный блок выполняет MAC-операции над тремя регистрами, причём делаться это может параллельно с исполнением других инструкций в остальной части ядра. Настройкой параметров и содержимого регистров, а также перемещением данных занимается ОС. Пока что в процессорах представлен только MAC-блок, но в будущем могут появиться блоки и для других, более сложных операций. В пике производительность AMX на INT8 составляет 2048 операций на цикл на ядро, что в восемь раз больше, чем при использовании традиционных инструкций AVX-512 (на двух FMA-портах). На BF16 производительность AMX вдвое ниже, но это всё равно существенный прирост по сравнению с прошлым поколением Xeon — Intel всё так же пытается создать универсальные ядра, которые справлялись бы не только с инференсом, но и с обучением ИИ-моделей. Тем не менее, компания говорит, что возможности AMX в CPU будут дополнять GPU, а не напрямую конкурировать с ними. К слову, именно Sapphire Rapids должен, наконец, сделать BF16 более массовым, поскольку Cooper Lake, где поддержка этого формата данных впервые появилась в CPU Intel, имеет довольно узкую нишу применения. Из прочих архитектурных обновлений можно отметить поддержку FP16 для AVX-512, инструкции для быстрого сложения (FADD) и более эффективного управления данными в иерархии кешей (CLDEMOTE), целый ряд новых инструкций и прерываний для работы с памятью и TLB для виртуальных машин (ВМ), расширенную телеметрию с микросекундными отсчётами и так далее. Последние пункты, в целом, нужны для более эффективного и интеллектуального управления ресурсами и QoS для процессов, контейнеров и ВМ — все они так или иначе снижают накладные расходы. Ещё больше ускоряют работу выделенные акселераторы. Пока упомянуты только два. Первый, DSA (Data Streaming Accelerator), ускоряет перемещение и передачу данных как в рамках одного хоста, так и между несколькими хостами. Это полезно при работе с памятью, хранилищем, сетевым трафиком и виртуализацией. Второй упомянутый ускоритель — это движок QAT (Quick Assist Engine), на который можно возложить операции или сразу цепочки операций (де-)компрессии (до 160 Гбит/с в обе стороны одновременно), хеширования и шифрования (до 400 Гбитс/с) в популярных алгоритмах: AES GCM/XTS, ChaChaPoly, DH, ECC и т.д. Теперь блок QAT стал частью самого процессора, тогда как прежде он был доступен в составе некоторых чипсетов или в виде отдельной карты расширения. Это позволило снизить задержки и увеличить производительность блока. Кроме того, QAT можно будет задействовать, например, для виртуализации или Intel Accelerator Interfacing Architecture (AiA). AiA — это ещё один новый набор инструкций, предназначенный для более эффективной работы с интегрированными и дискретными ускорителями. AiA помогает с управлением, синхронизацией и сигнализацией, что опять таки позволит снизить часть накладных расходов при взаимодействии с ускорителями из пространства пользователя. Подсистема памяти включает четыре двухканальных контроллера DDR5, по одному на каждый тайл. Надо полагать, что будут доступные четыре же NUMA-домена. Больше деталей, если не считать упомянутой поддержки следующего поколения Intel Optane PMem 300 (Crow Pass), предоставлено не было. Зато было официально подтверждено наличие моделей с набортной HBM, тоже по одному модулю на тайл. HBM может использоваться как в качестве кеша для DRAM, так и независимо. В некоторых случаях можно будет обойтись вообще без DRAM. Про PCIe 5.0 и CXL 1.1 (CXL.io, CXL.cache, CXL.memory) добавить нечего, хотя в рамках другого доклада Intel ясно дала понять, что делает ставку на CXL в качестве интерконнекта не только внутри одного узла, но и в перспективе на уровне стойки. Для объединения CPU (бесшовно вплоть до 8S) всё так же будет использоваться шина UPI, но уже второго поколения (16 ГТ/с на линию) — по 24 линии на каждый тайл. Конкретно для Sapphire Rapids Intel пока не приводит точные данные о росте IPC в сравнении с Ice Lake-SP, ограничиваясь лишь отдельными цифрами в некоторых задачах и областях. Также не был указан и ряд других важных параметров. Однако AMD EPYC Genoa, если верить последним утечкам, даже по чисто количественным характеристикам заметно опережает Sapphire Rapids.
30.07.2021 [21:05], Алексей Степин
Конец эпохи: Intel окончательно прекратила поставки процессоров ItaniumПервая попытка Intel покорить рынок массовых 64-бит систем окончилась неудачей — любопытная сама по себе архитектура Itanium (IA64) была несовместима со сложившейся экосистемой x86. Однако лишь сегодня в истории можно окончательно поставить точку: компания прекратила последние отгрузки процессоров Itanium. Сейчас поддержка 64-бит вычислений привычна и является частью любого достаточно современного процессора. Но так было не всегда: в конце 90-х и начале 2000-х ограничения, накладываемые 32-бит разрядностью хотя и были очевидны, рынок высокопроизводительных 64-бит процессоров для серверов и рабочих станций принадлежал компаниям Sun, Silicon Graphics, DEC и IBM. Все они имели RISC-архитектуру и не имели совместимости с x86. ![]() Форм-фактор Itanium: нечто среднее между слотовыми Pentium II/III и привычным PGA/LGA Itanium, или IA64, совместная разработка Intel и Hewlett-Packard, должна была вернуть этим компаниям первенство в сфере мощных CPU. И ставка была сделана на уникальную архитектуру EPIC (разновидность VLIW) с явным параллелизмом команд. Сама по себе IA64 обладала рядом преимуществ, однако требовала тонкой проработки ПО на уровне компилятора, поскольку процессоры EPIC во многом полагаются именно на него, а не на аппаратный планировщик. ![]() Itanium: радужные надежды и суровая реальность (красная линия) Отказ от последнего позволял потратить освободившийся транзисторный бюджет на более важные, по мнению Intel и HP, цели — например, на увеличение производительности вычислений с плавающей запятой. Но инфраструктура программного обеспечения к моменту анонса Itanium уже была весьма развитой. При этом новое, 64-бит ПО ещё надо было создать и, что гораздо важнее и сложнее, правильным образом оптимизировать, а уже имевшееся на новых CPU работало медленно из-за необходимости эмуляции x86. Компании пытались развивать IA64 до 2017 года, когда были представлены чипы Itanium Kittson с 8 ядрами и частотой до 2,66 ГГц, но то, что затея с новой архитектурой оказалась неудачной, было понятно уже после анонса первых процессоров AMD x86-64, полностью совместимых как с 32-бит, так и с 64-бит приложениями x86. В начале 2021 года Линус Торвальдс объявил о фактической смерти архитектуры и поддержка IA64 была исключена из новых ядер Linux. А сегодня можно говорить об окончательном завершении эры Itanium. ![]() Раритет: Supermicro i2DML-iG2 в форм-факторе EATX с поддержкой Itanium 2. Найти такую плату почти невозможно Сама Intel ещё в 2019-ом официально поставила на Itanium крест, но из-за сложившейся экосистемы заказы на процессоры принимались вплоть до 30 января 2020 года. А вчера компания официально объявила о прекращении поставок последних партий Itanium. Теперь ещё одна процессорная архитектура стала достоянием истории, хотя HPE формально будет поддерживать её до 2025 года. Сами CPU нередко встречаются на онлайн-аукционах, например, на Ebay, но даже для энтузиастов они малоинтересны — найти подходящую системную плату невероятно сложно, а стоить она может намного дороже самих процессоров, да и форм-фактор имеет специфический.
02.06.2021 [19:14], Игорь Осколков
Южная Корея намерена разработать собственные CPU и ИИ-чипы для суперкомпьютеров и серверовЮжная Корея намерена добиться большей независимости в сфере разработки и производства чипов для серверов и суперкомпьютеров, в первую очередь для нужд внутри страны. По сообщению Министерства науки и ИКТ Южной Кореи, пять гиперскейлеров подписали меморандум о взаимопонимании с пятью производителями микросхем. Меморандум предполагает расширение использования отечественных технологий, в частности, ИИ-ускорителей в центрах обработки данных на территории страны. Производители и разработчики чипов — SK Group, Rebellions, FuriosaAI и Исследовательский институт электроники и телекоммуникаций — также согласились создать для этого новый технологический центр в Кванджу на юго-западе страны. Отечественные чипы получат компании Naver Cloud, Douzone Bizon, Kakao Enterprise, NHN и KT. Все они являются крупными игроками на местном рынке и, каждая в своей области, довольно успешно конкурируют с зарубежными IT-гигантами. Это во многом напоминает ситуацию в Китае и Японии, которые также имеют сильных локальных игроков и вкладываются в разработку собственной микроэлектроники, чтобы быть менее зависимыми от США, как минимум, в области суперкомпьютинга. Несколько недель назад правительство объявило о пакете поддержки в размере 510 трлн вон ($451 млрд) для увеличения производства микросхем в стране, что принесёт пользу не только Samsung и SK Hynix, но и небольшим компаниям. Также ранее сообщалось, что Южная Корея намерена к 2030 году построить суперкомпьютер экзафлопсного класса на базе преимущественно «домашних» компонентов.
12.04.2021 [19:26], Игорь Осколков
NVIDIA анонсировала серверные Arm-процессоры Grace и будущие суперкомпьютеры на их базеВ рамках GTC’21 NVIDIA анонсировала Arm-процессоры Grace серверного класса, которые станут компаньонами будущих ускорителей компании. Это не означает полный отказ от x86-64, но это позволит компании предложить клиентам более глубоко оптимизированные, а, значит, и более быстрые решения. NVIDIA говорит, что новый CPU позволит на порядок повысить производительность систем на его основе в ИИ и HPC-задачах в сравнении с современными решениями. Процессор назван в честь Грейс Хоппер (Grace Hopper), одного из пионеров информатики и создательницы целого ряда основополагающих концепций и инструментов программирования. И это имя нам уже встречалось в контексте NVIDIA — в конце 2019 года компания зарегистрировала торговую марку Hopper для MCM-решений. Компания не готова раскрыть полные технически характеристики новинки, которая станет доступна в начале 2023 года, но приводит некоторые интересные детали. В частности, процессор будет использовать Arm-ядра Neoverse следующего поколения (надо полагать, уже на базе ARMv9), которые позволят получить в SPECrate2017_int_base результат выше 300. Для сравнения — система с парой современных AMD EPYC 7763 в том же бенчмарке показывает результат на уровне 800. Вторая особенность Grace — использование памяти LPDRR5X (с ECC, естественно). В сравнении с DDR4 она будет иметь вдвое большую пропускную способность (ПСП) и в 10 раз меньшее энергопотребление. Число и скорость каналов памяти не уточняются, но говорится о суммарной ПСП в более чем 500 Гбайт/с на процессор. А у того же EPYC 7763 теоретический пик ПСП чуть больше 200 Гбайт/с. Очевидно, что другие процессоры к моменту выхода NVIDIA Grace тоже увеличат и производительность, и пропускную способность памяти. Гораздо более интересный вопрос, сколько линий PCIe 5.0 они смогут предложить. Если допустить, что у них будет 128 линий, то общая скорость для них составит чуть больше 500 Гбайт/с. И NVIDIA этого мало — процессоры Grace получат прямое, кеш-когерентное подключение к GPU по NVLInk 4.0 (14x) с суммарной пропускной способностью боле 900 Гбайт/с. GPU тоже, как и прежде, будут общаться напрямую друг с другом по NVLink. Скорость связи между двумя CPU превысит 600 Гбайт/с, а в сборке из четырёх модулей CPU+GPU суммарная скорость обмена данными между системной памятью процессоров и GPU в такой mesh-сети составит 2 Тбайт/с. Но самое интересное тут то, что у памяти CPU (LPDDR5X) и GPU (HBM2e) в такой системе будет единое адресное пространство. Собственно говоря, таким образом компания решает давно назревшую проблему дисбаланса между скоростью обмена данными и доступным объёмом памяти в различных частях вычислительного комплекса. Для сравнения можно посмотреть на архитектуру нынешних DGX A100 или HGX. У каждого ускорителя A100 есть 40 или 80 Гбайт набортной памяти HBM2e (1555 или 2039 Гбайт/с соответственно) и NVLInk-подключение на 600 Гбайт/c, которое идёт к коммутатору NVSwitch, имеющего суммарную пропускную способность 1,8 Тбайт/с. Всего таких коммутаторов шесть, а объединяют они восемь ускорителей. Внутри этой NVLInk-фабрики сохраняется достаточно высокая скорость обмена данными, но как только мы выходим за её пределы, ситуация меняется. Каждый ускоритель A100 имеет второй интерфейс — PCIe 4.0 x16 (64 Гбайт/с), который уходит к PCIe-коммутатору, каковых в DGX A100 имеется четыре. Коммутаторы, в свою очередь, объединяют между собой сетевые 200GbE-адаптеры (суммарно в дуплексе до 1,6 Тбайт/с для связи с другими DGX A100), NVMe-накопители и CPU. У каждого CPU может быть довольно много памяти (от 512 Гбайт), но её скорость ограничена упомянутыми выше 200 Гбайт/c. Узким местом во всей этой схеме является как раз PCIe, поэтому переход исключительно на NVLInk позволит NVIDIA получить большой объём памяти при сохранении приемлемой ПСП, не тратясь лишний раз на дорогую локальную HBM2e у каждого GPU. Впрочем, если компания не переведёт на NVLink и собственные будущие DPU Bluefield-3 (400GbE), которые будут скармливать связке CPU+GPU по, например, GPUDirect Storage данные из внешних NVMe-oF хранилищ и объединять узлы DGX POD, то PCIe 5.0 в составе Grace стоит ждать. Это опять-таки упростит и повысит эффективность масштабирования. В целом, всё это необходимо из-за быстрого роста объёма ИИ-моделей — в GPT-3 уже 175 млрд параметров, а в течение пары лет можно ожидать модели уже с 0,5-1 трлн параметров. Им потребуются не только новые решения для обучения, но и для инференса. То же касается и физических расчётов — модели становятся всё больше и требовательнее + ИИ здесь тоже активно внедряется. Параллельно с разработкой Grace NVIDIA развивает программную экосистему вокруг Arm и своих решений, готовя почву для будущих систем на их основе. Одной из такой систем станет суперкомпьютер Alps в Швейцарском национальном компьютерном центре (Swiss National Computing Centre, CSCS), который придёт на смену Piz Daint (12 место в нынешнем рейтинге TOP500). Этот суперкомпьютер серии HPE Cray EX, в частности, сможет в семь раз быстрее обучить модель GPT-3, чем машина NVIDIA Selene (5 место в TOP500). Впрочем, на нём будут выполняться и классические HPC-задачи в области метеорологии, физики, химии, биологии, экономики и так далее. Ввод в эксплуатацию намечен на 2023 год. Тогда же в США появится аналогичная машина от HPE в Лос-Аламосской национальной лаборатории (LANL). Она дополнит систему Crossroads, использующую исключительно процессоры Intel Xeon Sapphire Rapids.
17.02.2021 [00:43], Игорь Осколков
Российские процессоры Эльбрус-16С, Эльбрус-12С и Эльбрус-2С3 получат ядра шестого поколения архитектуры E2KНа мероприятии Elbrus Tech Day компания МСЦТ рассказала о текущих достижениях и планах развития серии российских процессоров Эльбрус. Сейчас наиболее современным CPU этой линейки является Эльбрус-8СВ на базе архитектуры E2K (Эльбрус 2000) пятого поколения, но в ближайшие годы появятся сразу три SoC шестого поколения: Эльбрус-16С, Эльбрус-2С3 и Эльбрус-12С. Эльбрус-8СВ является эволюционным развитием Эльбрус-8. Оба чипа используют 28-нм техпроцесс, но за счёт оптимизаций у 8СВ удалось поднять частоту, что вкупе с поддержкой широких векторных инструкций и более современного стандарта памяти дало двукратный рост теоретической пиковой производительности. Впрочем, для программ, не использующих SIMD, прирост пропорционален увеличению тактовой частоты + они всё равно выигрывают от увеличения скорости работы памяти. На базе этих и других процессоров компания МЦСТ разрабатывает референсные дизайны материнских плат различных форм-факторов, которые можно лицензировать для дальнейшей кастомизации. Часть партнёров компании разрабатывает собственные материнские платы и изделия на их основе. В скором времени на TSMC будет размещён заказ на изготовление очередной партии Эльбрус-8СВ объёмом 10 тыс. штук. В целом, вокруг уже имеющихся CPU сложилась достаточно заметная экосистема как аппаратных, так и программных продуктов и решений. Следующее поколение процессоров будет разнообразнее. Помимо 16-ядерного Эльбрус-16С, ориентированного на высокопроизводительные серверные системы, будет и модель попроще, которая появится позже остальных — Эльбрус-12С. Этот 12-ядерный CPU рассчитан на серверы начального уровня, а также рабочие станции. А главное отличие от 16С будет в цене. Наконец, ещё один чип, двухъядерный Эльбрус-2С3, ориентирован на мобильные системы, в том числе планшетные компьютеры. Все чипы будут изготавливаться на TSMC по 16-нм техпроцессу FinFET и будут основаны на шестом поколении архитектуры E2K. Строго говоря, это уже не процессоры, а полноценные SoC с интегрированными контроллерами для различной периферии, и для работы им не требуется внешний чип южного моста, как было ранее. В случае Эльбрус-16С площадь кристалла составляет 618 мм2 (25,3 × 24,4 мм), упакован он в корпус HFCBGA4804 с габаритами 63 × 78 мм. Кристалл содержит 12 млрд транзисторов, а его мощность не превышает 130 Вт. Значительная часть изменений в архитектуре коснулась подсистемы памяти. В частности, были увеличены размеры кешей, суммарный объём которых достиг 51 Мбайт: общий для всех L3-кеш 32 Мбайт, увеличенный до 1 Мбайт L2-кеш, L1-кеш для инструкций на 128 Кбайт + L1-кеш данных на 64 Кбайт. Контроллер памяти стал восьмиканальным, получил поддержку модулей DDR4-3200 и 2DPC, что даёт до 4 Тбайт RAM на сокет с суммарной пропускной способностью до 200 Гбайт/с. Первые инженерные образцы Эльбрус-16С, полученные в конце прошлого года, уже выдают в бенчмарке stream скорость порядка 70-80% от максимально возможной. Контроллеры попарно подключены к четырём агентам (HMU), «прикреплённым» к внутренней mesh-шине с пропускной способностью 2 Тбайт/с, объединяющей память и ядра. Чип можно разделить на два или четыре NUMA-домена, что полезно для ряда задач. Одной из таких задач является виртуализация, и в Эльбрус-16С она, наконец, стала полноценной — новые процессоры поддерживают аппаратную виртуализацию практически всех важных ресурсов, в том числе и для режима x86-трансляции, который тоже никуда не делся. Для CPU прошлых поколений всё ещё можно использовать контейнеризацию, но МЦСТ занимается и подготовкой паравиртуализированного ядра и сопутствующих компонентов, включая KVM, QEMU, libvirt и virt-manager. Для самих ядер был произведён редизайн микроархитектуры, что дало повышение скорости работы и новые возможности. В частности, появились новые SIMD-инструкции в дополнение к имеющимся, поддержка FMA по стандарту IEEE 754-2008 (требуется в современных стандартах C), динамическая оптимизация (касается планирования, что важно для VLIW), новый контроллер прерываний (необходим для виртуализации) и так далее. Пиковая теоретическая производительность ядра составляет 96 Гфлопс для вычислений одинарной точности и 48 Гфлопс — для двойной. Для всего CPU это 1,5 Тфлопс и 768 Гфлопс соответственно. Предварительные тесты показывают прирост производительности в 2-2,5 раза в сравнении с Эльбрус-8СВ, но надо помнить, что очень много зависит от оптимизаций со стороны компилятора. Само ядро хоть и стало сложнее, но оно всё равно проще, чем ядра современных x86-64 процессоров. Слабым местом новых чипов, на наш взгляд, является IO-блок. В состав SoC входят четыре root-комплекса PCIe 3.0, которые в сумме дают 32 линии. Из них 8 или 16 линий можно выделить на подключение внешнего южного моста, если не хватает того, что встроен в сам чип. Он предоставляет 2 порта SATA 3.0, 4 порта USB 3.0/2.0 и два мульти-порта, дающих или пару SATA, или пару Ethernet с максимальной конфигурацией 10GbE + 2.5GbE. Ещё 8 линий PCIe можно отдать на канал для межпроцессорной связи (IPL) в дополнение к двумя каналам, которые есть всегда. В двухсокетной системе, таким образом, можно объединить CPU двумя или тремя IPL. Правда, скорость одного такого канала составляет всего 12 Гбит/с (на инженерных образцах пока достигли 10 Гбит/с), что значительно меньше, чему у UPI или Infinity Fabric. Всего в одной системе может быть объединение до четырёх процессоров. Помимо прочего, в чипах реализованы различные RAS-функции для повышения надёжности работы. Также улучшен мониторинг процессора и управление его питанием и охлаждением. Вероятно, теперь уже все системы на базе новых CPU будут комплектоваться BMC-контроллером — ASPEED AST2500 и в перспективе AST2600 — с собственной прошивкой на базе OpenBMC и с встроенной микро-ОС, упрощающей инициализацию и работу с оборудованием. Референсный дизайн двухсокетной платы 2Э16С-SPRC появится в середине этого года, а однопроцессорной Micro-ATX — к концу. В 2022 году появятся и другие варианты двух- и четырёхсокетных систем с Эльбрус-16С, а также одно- и двухсокетные платы для Эльбрус-12С. Партнёры МЦСТ, надо полагать, тоже не будут сидеть без дела. Напомним, что формально окончание разработки Эльбрус-16С намечено на конец этого года. Для Эльбрус-2С3 и Эльбрус-12С точные сроки озвучены не были. И если 12-ядерная модель, скорее всего, очень похожа на 16-ядерную, то младший чип серии заметно от них отличается. Эльбрус-2С3 имеет всего два ядра шестого поколения с тактовой частотой 2 ГГц, два канала памяти DDR4-3200 и производительность до 192/96 Гфлопс FP32/FP64. У него есть 16 линий PCIe 3.0. В его состав входит 3D-ядро Imagination PowerVR GX6650 (300 Гфлопс), ряд (де)кодеров видео, а также 2D-ядро собственной разработки. Есть четыре видеовыхода (из них 2 HDMI) и поддержка 4K-вывода. Для этой SoC компанией в течение 2021 года будут подготовлены первые платы Micro-ATX и Mini-ITX. Характеристики будущих процессоров Эльбрус-32С пока до конца не определены, но примерные очертания будущего продукта уже есть. CPU должен иметь производительность не ниже 1,5/3/6 Тфлопс для вычислений FP64/FP32/FP16 и содержать от 32 ядер с частотой более 2 ГГц. Возможно, будет и 64 ядра седьмого поколения E2K. Объём L3-кеша должен как минимум удвоиться, а контроллер памяти, возможно, получит поддержку DDR5 объёмом не менее 4 Тбайт/сокет. Предполагается возможность работы как минимум двухсокетных конфигураций. Дальнейшее развитие могут получить виртуализация и фирменная технология безопасных вычислений с попутным добавлением новых инструкций. Уже сейчас разработчики хотят предоставить 64 линии PCIe 5.0, что открывает путь к использованию CXL 2.0. К встроенным контроллерам, помимо NVMe, без которого уже точно не обойтись, могут добавиться 100GbE и USB 3.1 или более новые. Будущие кристаллы перейдут на техпроцесс не толще 7 нм, а их площадь вырастет до 600 мм2.
01.02.2021 [22:16], Алексей Степин
Cделка IBM и Inspur, похоже, спасает архитектуру POWER от вымиранияКогда говорят о противостоянии серверных процессоров, как правило, называют AMD и Intel, а с недавних пор ещё и ARM. Некогда крупный игрок, IBM со своими процессорами серии POWER, упоминается существенно реже, и на то есть причины — за прошедшее десятилетие дела у компании шли не слишком хорошо. Но, если верить аналитикам IT Jungle, ситуация с POWER не так проста и не так плоха. Если верить отчётам самой IBM, доходы снизились на рекордную величину за последние пять лет, упали даже продажи мейнфреймов. Доходы в сегменте аппаратного обеспечения за прошедший год у IBM упали на 18% относительно 2019 года, а у подразделения Power Systems называют даже цифру 43,3%. Однако как считают некоторые аналитики, дела в секторе серверов на базе процессоров POWER могут обстоять не так плохо, как это может показаться на первый взгляд. ![]() Платформа IBM POWER самобытна и весьма интересна сама по себе: так, уже не новые процессоры POWER9 поддерживают четыре потока на ядро против традиционных двух у x86, а в некоторых вариантах способны работать даже в режиме SMT8. Более новые POWER10 также поддерживают восьмипоточный режим; кроме того, они работают с прогрессивным форматом оперативной памяти OMI и имеют контроллер PCI Express 5.0. ![]() Планы развития архитектуры POWER Здесь следует немного углубиться в историю. Китайская компания Inspur, один из крупнейших среднеазиатских производителей серверного оборудования, всегда мечтала о «большом железе». В 2014 году ей удалось добиться договорённости с IBM о праве запускать фирменное ПО последней (в частности, базы данных DB2 и сервер приложений WebSphere) на 32-процессорных Itanium-системах. А месяцем позднее Inspur присоединилась к консорциуму OpenPower с целью создания серверов уже на базе архитектуры POWER. В 2017 начинается «война санкций», при этом приличного самостоятельного открытого клона POWER-процессора консорциум так и не создал. Известно, что китайская Suzhou PowerCore Technology, входящая в OpenPower, занималась адаптацией POWER под более «толстые» техпроцессы. Сейчас компания активно нанимает сотрудников и открывает новое подразделение в США. Однако чем именно она занимается и связан ли этот рост с полным открытием POWER ISA, не до конца ясно. ![]() Структура продаж POWER-систем по мнению ресурса IT Jungle До ввода санкций IBM и Inspur успевают создать совместное предприятие (51% Inspur + 49% IBM), которое, что интересно, тоже называется IBM — Inspur Business Machines. Цель новой компании, в которую вложили порядка 1 млрд юаней ($150 млн) — создание мощных серверных систем на базе архитектуры POWER для крупного бизнеса. Поставками же POWER-процессоров для Inspur занималась, в частности, всё та же Suzhou. Судя по косвенным данным, сделка для Inspur оказалась весьма успешна. Кроме того, компания вообще чувствует себя отлично, поставляя также x86-серверы как малому и среднему бизнесу, так и китайским гигинтам Alibaba, Baidu и Tencent. К сентябрю 2020 года продажи Inspur составят $7,71 млрд, что на 43% больше, нежели у IBM с её $5,4 млрд. ![]() С учётом поставок Inspur общий объём продаж POWER-серверов может выглядеть так по мнению IT Jungle К настоящему моменту IBM публикует только свои цифры продаж систем на базе POWER, и графики выглядят достаточно удручающе. Из-за санкций IBM не может продавать POWER-системы в КНР напрямую, а Inspur Business Machines — может. Из $8 млрд продаж Inspur примерно 10-12% может приходиться на системы с процессорами POWER, а это от $800 до $960 млн, и эти цифры сопоставимы с продажами серверов самой IBM. Иными словами, платформа POWER, скорее всего, отнюдь не находится в процессе вымирания. Более того, после неудачных 2016 и 2017 годов объёмы продаж таких серверов могли, как минимум, вернуться к показателям 2015 года. Также вполне вероятно, что и Google производит для себя серверы на базе POWER — соответствующие предложения появились в Google Cloud уже достаточно давно. Похожее решение есть и в Microsoft Azure.
13.01.2021 [19:03], Игорь Осколков
Qualcomm поглощает Nuvia, разработчика серверных Arm-процессоровQualcomm Incorporated объявила, что её дочерняя компания Qualcomm Technologies, Inc. заключила окончательное соглашение о приобретении NUVIA примерно за $1,4 млрд. Решения компании должны дополнить экосистему Snapdragon, включающую GPU, ИИ-движки, DSP и мультимедийные ускорители. Сделка ждёт одобрения со стороны регуляторов. Любопытно, что Qualcomm говорит об использовании решений NUVIA во флагманских смартфонах, ноутбуках следующего поколения, системах автопилотирования и приборных панелях авто, а также для сетевой инфраструктуры и подключённых устройств. Однако NUVIA разрабатывала SoC Orion c Arm-процессором Phoenix собственного дизайна, которая ориентирована на совершенно другой сегмент — на облачных провайдеров и гиперскейлеров. Компания обещала, что её чипы будут быстрее и энергоэффективнее AMD EPYC и Intel Xeon. Осенью она получила дополнительные $240 млн для производства первых чипов. ![]() Источник изображений: NUVIA У двух крупных игроков, Qualcomm и Broadcom, с серверными Arm-процессорами не заладилось. Первая забросила Centriq, а наследие проекта Vulcan второй в результате череды слияний и поглощений оказалось в руках Marvell, которая этими же руками проект, судя по всему, и похоронила. Так что на этом рынке к концу 2020 года осталось только два заметных игрока: Ampere, уже представившая свои чипы (очень неплохие, надо сказать), и подающие надежды NUVIA. Из альтернатив остаются Amazon Graviton2, который доступен только в облаке AWS, и Kunpeng от Huawei, которая находится под санкциями США и будущее её несколько туманно. Qualcomm, судя по сегодняшнему релизу, пока не очень заинтересована в развитии серверных Arm-процессоров. Вероятно, она надеется, что NUVIA поможет ей догнать Apple — Qualcomm традиционно отставала от последней в выводе на рынок SoC на базе новых архитектур Arm. Среди основателей NUVIA числится Джерард Уильямс III (Gerard Williams III), который почти десять лет руководил разработкой Arm-чипов в Apple, был научным сотрудником Arm и ведущим дизайнером Texas Instruments. В конце 2019 года Apple подала к нему иск. Двое других основателей NUVIA имеют не менее солидный послужной список: Ману Гулати (Manu Gulati) и Джон Бруно (John Bruno) в разное время работали в AMD, Apple и Google, в том числе в должности архитектора. К компании также присоединились бывший вице-президент Intel по маркетингу Джон Карвилл (Jon Carvill), работавший в Facebook✴, Qualcomm, Globalfoundries, AMD и ATI, а также Энтони Скарпино (Anthony Scarpino), проработавший 24 года в ATI и AMD. |
|