Материалы по тегу: mlperf
14.11.2024 [23:07], Владимир Мироненко
Google и NVIDIA показали первые результаты TPU v6 и B200 в ИИ-бенчмарке MLPerf TrainingУскорители Blackwell компании NVIDIA опередили в бенчмарках MLPerf Training 4.1 чипы H100 более чем в 2,2 раза, сообщил The Register. По словам NVIDIA, более высокая пропускная способность памяти в Blackwell также сыграла свою роль. Тесты были проведены с использование собственного суперкомпьютера NVIDIA Nyx на базе DGX B200. Новые ускорители имеют примерно в 2,27 раза более высокую пиковую производительность в вычисления FP8, FP16, BF16 и TF32, чем системы H100 последнего поколения. B200 показал в 2,2 раза более высокую производительность при тюнинге модели Llama 2 70B и в два раза большую производительность при предварительном обучении (Pre-training) модели GPT-3 175B. Для рекомендательных систем и генерации изображений прирост составил 64 % и 62 % соответственно. Компания также отметила преимущества используемой в B200 памяти HBM3e, благодаря которой бенчмарк GPT-3 успешно отработал всего на 64 ускорителях Blackwell без ущерба для производительности каждого GPU, тогда как для достижения такого же результата понадобилось бы 256 ускорителей H100. Впрочем, про Hopper компания тоже не забывает — в новом раунде компания смогла масштабировать тест GPT-3 175B до 11 616 ускорителей H100. Компания отметила, что платформа NVIDIA Blackwell обеспечивает значительный скачок производительности по сравнению с платформой Hopper, особенно при работе с LLM. В то же время чипы поколения Hopper по-прежнему остаются актуальными благодаря непрерывным оптимизациям ПО, порой кратно повышающим производительность в некоторых задач. Интрига в том, что в этот раз NVIDIA решила не показывать результаты GB200, хотя такие системы есть и у неё, и у партнёров. В свою очередь, Google представила первые результаты тестирования 6-го поколения TPU под названием Trillium, о доступности которого было объявлено в прошлом месяце, и второй раунд результатов ускорителей 5-го поколения TPU v5p. Ранее Google тестировала только TPU v5e. По сравнению с последним вариантом, Trillium обеспечивает прирост производительности в 3,8 раза в задаче обучения GPT-3, отмечает IEEE Spectrum. Если же сравнивать результаты с показателями NVIDIA, то всё выглядит не так оптимистично. Система из 6144 TPU v5p достигла контрольной точки обучения GPT-3 за 11,77 мин, отстав от системы с 11 616 H100, которая выполнила задачу примерно за 3,44 мин. При одинаковом же количестве ускорителей решения Google почти вдвое отстают от решений NVIDIA, а разница между v5p и v6e составляет менее 10 %. В тесте Stable Diffusion система из 1024 TPU v5p заняла второе место, завершив работу за 2,44 мин, тогда как система того же размера на основе NVIDIA H100 справилась с задачей за 1,37 мин. В остальных тестах на кластерах меньшего масштаба разрыв остаётся примерно полуторакратным. Впрочем, Google упирает на масштабируемость и лучшее соотношение цены и производительности в сравнении как с решениями конкурентов, так и с собственными ускорителями прошлых поколений. Также в новом раунде MLPerf появился единственный результат измерения энергопотребления во время проведения бенчмарка. Система из восьми серверов Dell XE9680, каждый из которых включал восемь ускорителей NVIDIA H100 и два процессора Intel Xeon Platinum 8480+ (Sapphire Rapids), в задаче тюнинга Llama2 70B потребила 16,38 мДж энергии, потратив на работу 5,05 мин. — средняя мощность составила 54,07 кВт.
29.08.2024 [01:00], Владимир Мироненко
NVIDIA вновь показала лидирующие результаты в ИИ-бенчмарке MLPerf InferenceNVIDIA сообщила, что её платформы показали самые высокие результаты во всех тестах производительности уровня ЦОД в бенчмарке MLPerf Inference v4.1, где впервые дебютировал ускоритель семейства Blackwell. Ускоритель NVIDIA B200 (SXM, 180 Гбайт HBM) оказался вчетверо производительнее H100 на крупнейшей рабочей нагрузке среди больших языковых моделей (LLM) MLPerf — Llama 2 70B — благодаря использованию механизма Transformer Engine второго поколения и FP4-инференсу на Tensor-ядрах. Впрочем, именно B200 заказчики могут и не дождаться. Ускоритель NVIDIA H200, который стал доступен в облаке CoreWeave, а также в системах ASUS, Dell, HPE, QTC и Supermicro, показал лучшие результаты во всех тестах в категории ЦОД, включая последнее дополнение к бенчмарку, LLM Mixtral 8x7B с общим количеством параметров 46,7 млрд и 12,9 млрд активных параметров на токен, использующую архитектуру Mixture of Experts (MoE, набор экспертов). Как отметила NVIDIA, MoE приобрела популярность как способ привнести большую универсальность в LLM, поскольку позволяет отвечать на широкий спектр вопросов и выполнять более разнообразные задачи в рамках одного развёртывания. Архитектура также более эффективна, поскольку активируются только несколько экспертов на инференс — это означает, что такие модели выдают результаты намного быстрее, чем высокоплотные (Dense) модели аналогичного размера. Также NVIDIA отмечает, что с ростом размера моделей для снижения времени отклика при инференсе объединение нескольких ускорителей становится обязательными. По словам компании, NVLink и NVSwitch уже в поколении NVIDIA Hopper предоставляют значительные преимущества для экономичного инференса LLM в реальном времени. А платформа Blackwell ещё больше расширит возможности NVLink, позволив объединить до 72 ускорителей. Заодно компания в очередной раз напомнила о важности программной экосистемы. Так, в последнем раунде MLPerf Inference все основные платформы NVIDIA продемонстрировали резкий рост производительности. Например, ускорители NVIDIA H200 показали на 27 % большую производительность инференса генеративного ИИ по сравнению с предыдущим раундом. А Triton Inference Server продемонстрировал почти такую же производительность, как и у bare-metal платформ. Наконец, благодаря программным оптимизациям в этом раунде MLPerf платформа NVIDIA Jetson AGX Orin достигла более чем 6,2-кратного улучшения пропускной способности и 2,5-кратного улучшения задержки по сравнению с предыдущим раундом на рабочей нагрузке GPT-J LLM. По словам NVIDIA, Jetson способен локально обрабатывать любую модель-трансформер, включая LLM, модели класса Vision Transformer и, например, Stable Diffusion. А вместо разработки узкоспециализированных моделей теперь можно применять универсальную GPT-J-6B модель для обработки естественного языка на периферии.
23.06.2024 [11:45], Сергей Карасёв
AMD отказывается от публичного тестирования ускорителей Instinct MI300X в бенчмарках MLPerfКомпания AMD, по сообщению ресурса Wccftech, отклонила просьбу стартапа Tiny Corp о сравнительном испытании ИИ-ускорителей Instinct MI300X в бенчмарке MLPerf, который предлагает тесты для множества разных сценариев, в том числе для задач машинного зрения, обработки языка, рекомендательных систем и обучения с подкреплением. Tiny Corp является разработчиком фреймворка Tinygrad для нейросетей. Кроме того, стартап проектирует компактные компьютеры Tinybox, ориентированные на выполнение ИИ-задач. В зависимости от типа используемых ускорителей (AMD или NVIDIA) производительность достигает 738 или 991 Тфлопс (FP16). Цена — $15 тыс. и $25 тыс. соответственно. Не так давно Tiny Corp предложила AMD предоставить ускорители Instinct MI300X для нового этапа тестов в MLPerf. Однако разработчик чипов по каким-то причинам отказался это сделать, дав крайне уклончивый ответ. «Наше предложение было отклонено. Они [компания AMD] не говорят чётко "нет", используя вместо этого не несущие смысловой нагрузки слова вроде "партнёрство" и "сотрудничество"», — отмечается в сообщении Tiny Corp. Высказываются предположения, что нежелание AMD участвовать в тестах MLPerf может быть связано с заявлениями компании о превосходстве ускорителей Instinct MI300X над изделиями конкурентов. Фактическая оценка производительности в MLPerf может подорвать эти утверждения. Впрочем, в тестах MLPerf отказываются участвовать и другие игроки рынка, например, Groq. Так или иначе, на сегодняшний день чипы NVIDIA остаются безоговорочными лидерами в бенчмарке MLPerf. Вместе с тем единственным конкурентом для них в этом тесте выступают изделия Intel Gaudi. Изделия Intel не дотягивают по производительности до решений NVIDIA, но компания делает упор на стоимость своих продуктов и даже публично назвала цены на ускорители Gaudi, что для данной индустрии случай крайне редкий.
12.06.2024 [18:00], Владимир Мироненко
Уже рутина: NVIDIA снова улучшила результаты в ИИ-бенчмарке MLPerf TrainingВычислительные платформы NVIDIA снова продемонстрировали высокую производительность, на этот раз в свежих тестах MLPerf Training v4.0. Так, суперкомпьютер NVIDIA EOS-DFW более чем утроил свою производительность в LLM-тесте на базе GPT-3 175B по сравнению с прошлогодним результатом. Как сообщается, 11 616 ускорителей NVIDIA H100, объединённых 400G-интерконнектом NVIDIA Quantum-2 InfiniBand, позволили суперкомпьютеру EOS достичь столь значительного результата благодаря более масштабному и комплексному подходу к проектированию системы. А это позволяет более эффективно обучать и запускать крупные модели, экономя время и ресурсы, говорит компания. А более современный ускоритель H200 с улучшенной подсистемой памяти в MLPerf Training быстрее H100 на 14 %, а в GNN-тестах (RGAT) узлы с H200 оказались быстрее узлов с H100 сразу на 47 %. По словам компании, поставщики услуг LLM могут всего за четыре года, инвестировав $1, получить $7, используя модель Llama 3 70B на серверах на базе NVIDIA HGX H200, если исходить из того, что обслуживание обходится в $0,60 за миллион токенов, а пропускная способность HGX H200 составляет 24 тыс. токенов в секунду. Росту производительности также способствовало совершенствование и оптимизация ПО. Так, кластер из 512 чипов H100 за год стал на 27 % быстрее, а рост производительности с увеличением количества ускорителей теперь более линеен. В новом тесте MLPerf Training по тюнингу LLM (LoRA применительно к Meta✴ Llama 2 70B) системы NVIDIA показали эффективное масштабирование при количестве ускорителей от 8 до 1024. NVIDIA также увеличила производительность обучения Stable Diffusion v2 почти на 80 % при тех же масштабах систем, что были представлены в прошлом тестировании. NVIDIA отметила, что для компаний, запускающих приложения на базе LLM, высокая производительность имеет большое значение. Возможность обучать и настраивать более мощные модели — и быстрее их развёртывать и запускать — позволит получить лучшие результаты и более высокий доход. А с выходом платформы NVIDIA Blackwell скоро появится возможность как обучения, так и инференса моделей генеративного ИИ с триллионом параметров.
28.03.2024 [14:31], Сергей Карасёв
Intel Gaudi2 остаётся единственным конкурентом NVIDIA H100 в бенчмарке MLPerf InferenceКорпорация Intel сообщила о том, что её ИИ-ускоритель Habana Gaudi2 остаётся единственной альтернативой NVIDIA H100, протестированной в бенчмарке MLPerf Inference 4.0. При этом, как утверждается, Gaudi2 обеспечивает высокое быстродействие в расчёте на доллар, хотя именно чипы NVIDIA являются безоговорочными лидерами. Отмечается, что для платформы Gaudi2 компания Intel продолжает расширять поддержку популярных больших языковых моделей (LLM) и мультимодальных моделей. В частности, для MLPerf Inference v4.0 корпорация представила результаты для Stable Diffusion XL и Llama v2-70B. Согласно результатам тестов, в случае Stable Diffusion XL ускоритель H100 превосходит по производительности Gaudi2 в 2,1 раза в оффлайн-режиме и в 2,16 раза в серверном режиме. При обработке Llama v2-70B выигрыш оказывается более значительным — в 2,76 раза и 3,35 раза соответственно. Однако на большинстве этих задач (кроме серверного режима Llama v2-70B) решение Gaudi2 выигрывает у H100 по показателю быстродействия в расчёте на доллар. В целом, ИИ-ускоритель Gaudi2 в Stable Diffusion XL показал результат в 6,26 и 6,25 выборок в секунду для оффлайн-режима и серверного режима соответственно. В случае Llama v2-70B достигнут показатель в 8035,0 и 6287,5 токенов в секунду соответственно. Говорится также, что серверные процессоры Intel Xeon Emerald Rapids благодаря улучшениям аппаратной и программной составляющих в бенчмарке MLPerf Inference v3.1 демонстрируют в среднем в 1,42 раза более высокие значения по сравнению с чипами Xeon Sapphire Rapids. Например, для GPT-J с программной оптимизацией и для DLRMv2 зафиксирован рост быстродействия примерно в 1,8 раза.
27.03.2024 [22:29], Алексей Степин
Новый бенчмарк — новый рекорд: NVIDIA подтвердила лидерские позиции в MLPerf InferenceКомпания NVIDIA опубликовала новые, ещё более впечатляющие результаты в области работы с большими языковыми моделями (LLM) в бенчмарке MLPerf Inference 4.0. За прошедшие полгода и без того высокие результаты, демонстрируемые архитектурой Hopper в инференс-сценариях, удалось улучшить практически втрое. Столь внушительный результат достигнут благодаря как аппаратным улучшениям в ускорителях H200, так и программным оптимизациям. Генеративный ИИ буквально взорвал индустрию: за последние десять лет вычислительная мощность, затрачиваемая на обучение нейросетей, выросла на шесть порядков, а LLM с триллионом параметров уже не являются чем-то необычным. Однако и инференс подобных моделей тоже является непростой задачей, к которой NVIDIA подходит комплексно, используя, по её же собственным словам, «многомерную оптимизацию». Одним из ключевых инструментов является TensorRT-LLM, включающий в себя компилятор и прочие средства разработки, учитывающие архитектуру ускорителей компании. Благодаря ему удалось почти втрое повысить производительность инференса GPT-J на ускорителях H100 всего за полгода. Такой прирост достигнут благодаря оптимизации очередей на лету (inflight sequence batching), применению страничного KV-кеша (paged KV cache), тензорному параллелизма (распределение весов по ускорителям), FP8-квантизации и использованию нового ядра XQA (XQA kernel). В случае ускорителей H200, использующих ту же архитектуру Hopper, что и H100, важную роль играет память: 141 Гбайт HBM3e (4,8 Тбайт/с) против 80 Гбайт HBM3 (3,35 Тбайт/с). Такой объём позволяет разместить модель уровня Llama 2 70B целиком в локальной памяти. В тесте MLPerf Llama 2 70B ускорители H200 на 28 % производительнее H100 при том же теплопакете 700 Вт, а увеличение теплопакета до 1000 Вт (так делают некоторые вендоры в своих MGX-платформах) даёт ещё 11–14 % прироста, а итоговая разница с H100 в этом тесте может доходить до 45 %. В специальном разделе новой версии MLPerf NVIDIA продемонстрировала несколько любопытных техник дальнейшей оптимизации: «структурированную разреженность» (structured sparsity), позволяющую поднять производительность в тесте Llama 2 на 33 %, «обрезку» (pruning), упрощающую ИИ-модель и позволяющую повысить скорость инференса ещё на 40 %, а также DeepCache, упрощающую вычисления для Stable Diffusion XL и дающую до 74 % прироста производительности. На сегодня платформа на базе модулей H200, по словам NVIDIA, является самой быстрой инференс-платформой среди доступных. Результатами GH200 компания похвасталась ещё в прошлом раунде, а вот показатели ускорителей Blackwell она не предоставила. Впрочем, не все считают результаты MLPerf показательными. Например, Groq принципиально не участвует в этом бенчмарке.
14.11.2023 [03:20], Алексей Степин
Intel показала результаты тестов ускорителя Max 1550 и рассказала о будущих чипах Gaudi3 и Falcon ShoresВ рамках SC23 корпорация Intel продемонстрировала ряд любопытных слайдов. На них присутствуют результаты тестирования ускорителя Max 1550 с архитектурой Xe, а также планы относительно следующего поколения ИИ-ускорителей Gaudi. При этом компания применила иной подход, нежели обычно — вместо демонстрации результатов, полученных в стенах самой Intel, слово было предоставлено Аргоннской национальной лаборатории Министерства энергетики США, где летом этого года было завершён монтаж суперкомпьютера экза-класса Aurora, занимающего нынче второе место в TOP500. В этом HPC-кластере применены OAM-модули Max 1550 (Ponte Vecchio) с теплопакетом 600 Вт. Они содержат в своём составе 128 ядер Xe и 128 Гбайт памяти HBM2E. Интерфейс Xe Link позволяет общаться напрямую восьми таким модулям, что обеспечивает более эффективную масштабируемость. Хотя настройка вычислительного комплекса Aurora ещё продолжается, уже имеются данные о производительности Max 1550 в сравнении с AMD Instinct MI250 и NVIDIA A100. В тесте физики высоких частиц, использующих сочетание PyTorch+Horovod (точность вычислений FP32), ускорители Intel уверенно заняли первое место, а также показали 83% эффективность масштабирования на 512 узлах Aurora. В тесте, симулирующем поведение комплекса кремниевых наночастиц, ускорители Max 1550, также оказались первыми как в абсолютном выражении, так и в пересчёте на 128-узловой тест в сравнении с системами Polaris (четыре A100 на узел) и Frontier (четыре MI250 на узел). Написанный с использованием Fortran и OpenMP код доказал работоспособность и при масштабировании до более чем 500 вычислительных узлов Aurora. В целом, ускорители Intel Max 1550 демонстрируют хорошие результаты и не уступают NVIDIA H100: в некоторых задачах их относительная эффективность составляет не менее 0,82, но в большинстве других тестов этот показатель варьируется от 1,0 до 3,76. Очевидно, что у H100 появился достойный соперник, который, к тому же, имеет меньшую стоимость и большую доступность. Но сама NVIDIA уже представила чипы (G)H200, а AMD готовит Instinct MI300. Системы на базе Intel Max доступны в различном виде: как в облаке Intel Developer Cloud, так и в составе OEM-решений. Supermicro предлагает сервер с восемью модулями OAM, а Dell и Lenovo — решения с четырьями ускорителями в этом же формате. PCIe-вариант Max 1100 доступен от вышеуказанных производителей, а также у HPE. Помимо ускорителей Max, Intel привела и новые данные о производительности ИИ-сопроцессоров Gaudi2. Компания продолжает активно совершенствовать и оптимизировать программную экосистему Gaudi. В результате, в инференс-системе на базе модели GPT-J-6B результаты ускорителей Gaudi2 уже сопоставимы с NVIDIA H100 (SXM 80 Гбайт), а A100 существенно уступает как Gaudi2, так и Max 1550. Но самое интересное — это сведения о планах относительно следующего поколения Gaudi. Теперь известно, что Gaudi3 будет производиться с использованием 5-нм техпроцесса. Новый чип будет в четыре раза быстрее в вычислениях BF16, а также получит вдвое более мощную подсистему памяти и в 1,5 раза больше памяти HBM. Увидеть свет он должен в 2024 году. Заодно компания напомнила, что процессоры Xeon Emerald Rapids будут представлены ровно через месяц, а Granite Rapids появятся в 2024 году. В 2025 появится чип Falcon Shores, который теперь должен по задумке Intel сочетать в себе GPU и ИИ-сопроцессор. Он объединит архитектуры Habana и Xe в единое решение с тайловой компоновкой, памятью HBM3 и полной поддержкой CXL. Следует отметить, что такая унификация вполне реальна: Intel весьма активно развивает универсальный, гибкий и открытый стек технологий в рамках проекта oneAPI. В него входят все необходимые инструменты — от компиляторов и системных библиотек до средств интеграции с популярными движками аналитики данных, моделями и библиотеками искусственного интеллекта.
11.11.2023 [15:23], Сергей Карасёв
MLPerf: Intel улучшила производительность Gaudi2, но лидером остаётся NVIDIA H100Консорциум MLCommons обнародовал результаты тестирования различных аппаратных решений в бенчмарке MLPerf Training 3.1, который оценивает производительность на ИИ-операциях. Отмечается, что корпорация Intel смогла существенно увеличить быстродействие своего ускорителя Habana Gaudi2, но безоговорочным лидером остаётся NVIDIA H100. Тесты проводились на платформе Xeon Sapphire Rapids. Отмечается, что для некоторых задач Intel реализовала поддержку FP8-вычислений, благодаря чему производительность поднялась в два раза по сравнению с показателями, которые этот же ускоритель демонстрировал ранее. Согласно результатам тестов, в бенчмарке GPT-3 ускоритель Gaudi2 ровно в два раза проигрывает решению NVIDIA H100. То же самое касается теста Stable Diffusion: при этом нужно отметить, что Gaudi2 использовал формат BF16, а H100 — FP16. В ResNet эти ускорители демонстрируют сопоставимую производительность. В тесте BERT чип H100 при использовании FP8-вычислений показал значительное преимущество перед Gaudi2, который использовал формат BF16. Сама Intel отмечает, что с внедрением поддержки FP8 система с 384 ускорителями Gaudi2 способна завершить обучение GPT-3 за 153,58 мин. При использовании 64 чипов Gaudi2 тест Stable Diffusion может быть завершён за 20,2 мин (BF16). Для тестов BERT и ResNet-50 на восьми ускорителях Gaudi2 (BF16) результат составляет 13,27 и 15,92 мин соответственно. Вместе с тем стоимость и доступность ускорителей Intel, как считается, существенно лучше, чем у решений NVIDIA.
08.11.2023 [20:00], Игорь Осколков
Счёт на секунды: ИИ-суперкомпьютер NVIDIA EOS с 11 тыс. ускорителей H100 поставил рекорды в бенчмарках MLPerf TrainingВместе с публикацией результатов MLPerf Traning 3.1 компания NVIDIA официально представила новый ИИ-суперкомпьютер EOS, анонсированный ещё весной прошлого года. Правда, с того момента машина подросла — теперь включает сразу 10 752 ускорителя H100, а её FP8-производительность составляет 42,6 Эфлопс. Более того, практически такая же система есть и в распоряжении Microsoft Azure, и её «кусочек» может арендовать каждый, у кого найдётся достаточная сумма денег. Суммарно EOS обладает порядка 860 Тбайт памяти HBM3 с агрегированной пропускной способностью 36 Пбайт/с. У интерконнекта этот показатель составляет 1,1 Пбайт/с. В данном случае 32 узла DGX H100 объединены посредством NVLink в блок SuperPOD, а за весь остальной обмен данными отвечает 400G-сеть на базе коммутаторов Quantum-2 (InfiniBand NDR). В случае Microsoft Azure конфигурация машины практически идентичная с той лишь разницей, что для неё организован облачный доступ к кластерам. Но и сам EOS базируется на платформе DGX Cloud, хотя и развёрнутой локально. В рамках MLPerf Training установила шесть абсолютных рекордов в бенчмарках GPT-3 175B, Stable Diffusion (появился только в этом раунде), DLRM-dcnv2, BERT-Large, RetinaNet и 3D U-Net. NVIDIA на этот раз снова не удержалась и добавила щепотку маркетинга на свои графики — когда у тебя время исполнения теста исчисляется десятками секунд, сравнивать свои результаты с кратно меньшими по количеству ускорителей кластерами несколько неспортивно. Любопытно, что и на этот раз сравнивать H100 приходится с Habana Gaudi 2, поскольку Intel не стесняется показывать результаты тестов. NVIDIA очередной раз подчеркнула, что рекорды достигнуты благодаря оптимизациям аппаратной части (Transformer Engine) и программной, в том числе совместно с MLPerf, а также благодаря интерконнекту. Последний позволяет добиться эффективного масштабирования, близкого к линейному, что в столь крупных кластерах выходит на первый план. Это же справедливо и для бенчмарков из набора MLPerf HPC, где система EOS тоже поставила рекорд.
15.09.2023 [11:29], Сергей Карасёв
СХД DDN AI400X2 показала быстродействие до 16,2 Гбайт/с в ИИ-тесте MLPerf Storage v0.5Компания DataDirect Networks (DDN), специализирующаяся на платформах хранения данных для НРС-систем, сообщила о том, что её массив AI400X2 NVMe показал высокие результаты в ИИ-бенчмарке MLPerf Storage v0.5 при выполнении задач сегментации изображений и обработки естественного языка. Платформа AI400X2 совмещает параллельную файловую систему с новым алгоритмом сжатием данных на стороне клиента. Утверждается, что по сравнению с альтернативными решениями достигается увеличение производительности до 10 раз. В частности, в тесте MLPerf Storage v0.5 при использовании одного узла AI400X2 продемонстрирована пропускная способность на уровне 16,2 Гбайт/с. Утверждается, что этого достаточно для обслуживания 40 высокопроизводительных ИИ-ускорителей. В многоузловой конфигурации скорость передачи данных достигает 61,6 Гбайт/с, что позволяет поддерживать работу до 160 ускорителей ИИ. DDN заявляет, что продемонстрированные в бенмарке MLPerf Storage v0.5 показатели говорят о повышении эффективности СХД приблизительно на 700 % в расчёте на каждый узел по сравнению с конкурирующими локальными решениями. Отмечается, что возможность поддерживать ИИ-нагрузки и большие языковые модели с высоким уровнем эффективности и масштабируемости, одновременно минимизируя энергопотребление и занимаемую площадь ЦОД, имеет решающее значение при внедрении передовых приложений и сервисов. |
|