Материалы по тегу: nvlink
20.08.2022 [22:30], Алексей Степин
NVIDIA поделилась некоторыми деталями о строении Arm-процессоров Grace и гибридных чипов Grace HopperНа GTC 2022 весной этого года NVIDIA впервые заявила о себе, как о производителе мощных серверных процессоров. Речь идёт о чипах Grace и гибридных сборках Grace Hopper, сочетающих в себе ядра Arm v9 и ускорители на базе архитектуры Hopper, поставки которых должны начаться в первой половине следующего года. Многие разработчики суперкомпьютеров уже заинтересовались новинками. В преддверии конференции Hot Chips 34 компания раскрыла ряд подробностей о чипах. Grace производятся с использованием техпроцесса TSMC 4N — это специально оптимизированный для решений NVIDIA вариант N4, входящий в серию 5-нм процессов тайваньского производителя. Каждый кристалл процессорной части Grace содержит 72 ядра Arm v9 с поддержкой масштабируемых векторных расширений SVE2 и расширений виртуализации с поддержкой S-EL2. Как сообщалось ранее, NVIDIA выбрала для новой платформы ядра Arm Neoverse. Процессор Grace также соответствует ряду других спецификаций Arm, в частности, имеет отвечающий стандарту RAS v1.1 контроллер прерываний (Generic Interrupt Controller, GIC) версии v4.1, блок System Memory Management Unit (SMMU) версии v3.1 и средства Memory Partitioning and Monitoring (MPAM). Базовых кристаллов у Grace два, что в сумме даёт 144 ядра — рекордное количество как в мире Arm, так и x86. Внутренние блоки Grace соединяются посредством фабрики Scalable Coherency Fabric (SCF), вариации NVIDIA на тему сети CMN-700, применяемой в дизайнах Arm Neoverse. Производительность данного интерконнекта составляет 3,2 Тбайт/с. В случае Grace он предполагает наличие 117 Мбайт кеша L3 и поддерживает когерентность в пределах четырёх сокетов (посредством новой версии NVLink). Но SCF поддерживает масштабирование. Пока что в «железе» она ограничена двумя блоками Grace, а это уже 144 ядра и 234 Мбайт L3-кеша. Ядра и кеш-разделы (SCC) рапределены по внутренней mesh-фабрике SCF. Коммутаторы (CSN) служат интерфейсами для ядер, кеш-разделов и остальными частями системы. Блоки CSN общаются непосредственно друг с другом, а также с контроллерами LPDDR5X и PCIe 5.0/cNVLink/NVLink C2C. В чипе реализована поддержка PCI Express 5.0. Всего контроллер поддерживает 68 линий, 12 из которых могут также работать в режиме cNVLink (NVLink с когерентностью). x16-интерфейс посредством бифуркации может быть превращен в два x8. Также на приведённой NVIDIA диаграмме можно видеть целых 16 двухканальных контроллеров LPDDR5x. Заявлена ПСП на уровне свыше 1 Тбайт/с для сборки (до 546 Гбайт/с на кристалл CPU). Основной же межчиповой связи NVIDIA видит новую версию NVLink — NVLink-C2C, которая в семь раз быстрее PCIe 5.0 и способна обеспечить двунаправленную скорость передачи данных на уровне до 900 Гбайт/с, будучи при этом в пять раз экономичнее. Удельное потребление у новинки составляет 1,3 пДж/бит, что меньше, нежели у AMD Infinity Fabric с 1,5 пДж/бит. Впрочем, существуют и более экономичные решения, например, UCIe (~0,5 пДж/бит). ![]() Новый вариант NVLink обеспечит кластер на базе Grace Hopper единым пространством памяти. Источник: NVIDIA NVLink-C2C позволяет реализовать унифицированный «плоский» пул памяти с общим адресным пространством для Grace Hopper. В рамках одного узла возможно свободное обращение к памяти соседей. А вот для объединения нескольких узлов понадобится уже внешний коммутатор NVSwitch. Он будет занимать 1U в высоту, и предоставлять 128 портов NVLink 4 с агрегированной пропускной способностью до 6,4 Тбайт/с в дуплексе. ![]() Источник: NVIDIA Производительность Grace также обещает быть рекордно высокой благодаря оптимизированной архитектуре и быстрому интерконнекту. Даже по предварительным цифрам, опубликованным NVIDIA, речь идёт о 370 очках SPECrate2017_int_base для одного кристалла Grace и 740 очках для 144-ядерной сборки из двух кристаллов — и это с использованием обычного компилятора GCC без тонких платформенных оптимизаций. Последняя цифра существенно выше результатов, показанных 128-ядерными Alibaba T-Head Yitian 710, также использующим архитектуру Arm v9, и 64-ядерными AMD EPYC 7773X.
22.03.2022 [18:40], Игорь Осколков
NVIDIA анонсировала 4-нм ускорители Hopper H100 и самый быстрый в мире ИИ-суперкомпьютер EOS на базе DGX H100На GTC 2022 компания NVIDIA анонсировала ускорители H100 на базе новой архитектуры Hopper. Однако NVIDIA уже давно говорит о себе как создателе платформ, а не отдельных устройств, так что вместе с H100 были представлены серверные Arm-процессоры Grace, в том числе гибридные, а также сетевые решения и обновления наборов ПО. ![]() NVIDIA H100 (Изображения: NVIDIA) NVIDIA H100 использует мультичиповую 2.5D-компоновку CoWoS и содержит порядка 80 млрд транзисторов. Но нет, это не самый крупный чип компании на сегодняшний день. Кристаллы новинки изготавливаются по техпроцессу TSMC N4, а сопровождают их — впервые в мире, по словам NVIDIA — сборки памяти HBM3 суммарным объёмом 80 Гбайт. Объём памяти по сравнению с A100 не вырос, зато в полтора раза увеличилась её скорость — до рекордных 3 Тбайт/с. Подробности об архитектуре Hopper будут представлены чуть позже. Пока что NVIDIA поделилась некоторыми сведениями об особенностях новых чипов. Помимо прироста производительности от трёх (для FP64/FP16/TF32) до шести (FP8) раз в сравнении с A100 в Hopper появилась поддержка формата FP8 и движок Transformer Engine. Именно они важны для достижения высокой производительности, поскольку само по себе четвёртое поколение ядер Tensor Core стало втрое быстрее предыдущего (на всех форматах). TF32 останется форматом по умолчанию при работе с TensorFlow и PyTorch, но для ускорения тренировки ИИ-моделей NVIDIA предлагает использовать смешанные FP8/FP16-вычисления, с которыми Tensor-ядра справляются эффективно. Хитрость в том, что Transformer Engine на основе эвристик позволяет динамически переключаться между ними при работе, например, с каждым отдельным слоем сети, позволяя таким образом добиться повышения скорости обучения без ущерба для итогового качества модели. На больших моделях, а именно для таких H100 и создавалась, сочетание Transformer Engine с другими особенностями ускорителей (память и интерконнект) позволяет получить девятикратный прирост в скорости обучения по сравнению с A100. Но Transformer Engine может быть полезен и для инференса — готовые FP8-модели не придётся самостоятельно конвертировать в INT8, движок это сделает на лету, что позволяет повысить пропускную способность от 16 до 30 раз (в зависимости от желаемого уровня задержки). Другое любопытное нововведение — специальные DPX-инструкции для динамического программирования, которые позволят ускорить выполнение некоторых алгоритмов до 40 раз в задачах, связанных с поиском пути, геномикой, квантовыми системами и при работе с большими объёмами данных. Кроме того, H100 получили дальнейшее развитие виртуализации. В новых ускорителях всё так же поддерживается MIG на 7 инстансов, но уже второго поколения, которое привнесло больший уровень изоляции благодаря IO-виртуализации, выделенным видеоблокам и т.д. Так что MIG становится ещё более предпочтительным вариантом для облачных развёртываний. Непосредственно к MIG примыкает и технология конфиденциальных вычислений, которая по словам компании впервые стала доступна не только на CPU. Программно-аппаратное решение позволяет создавать изолированные ВМ, к которым нет доступа у ОС, гипервизора и других ВМ. Поддерживается сквозное шифрование при передаче данных от CPU к ускорителю и обратно, а также между ускорителями. Память внутри GPU также может быть изолирована, а сам ускоритель оснащается неким аппаратным брандмауэром, который отслеживает трафик на шинах и блокирует несанкционированный доступ даже при наличии у злоумышленника физического доступа к машине. Это опять-таки позволит без опаски использовать H100 в облаке или в рамках колокейшн-размещения для обработки чувствительных данных, в том числе для задач федеративного обучения. Но главная инновация — это существенное развитие интерконнекта по всем фронтам. Суммарная пропускная способность внешних интерфейсов чипа H100 составляет 4,9 Тбайт/с. Да, у H100 появилась поддержка PCIe 5.0, тоже впервые в мире, как утверждает NVIDIA. Однако ускорители получили не только новую шину NVLink 4.0, которая стала в полтора раза быстрее (900 Гбайт/с), но и совершенно новый коммутатор NVSwitch, который позволяет напрямую объединить между собой до 256 ускорителей! Пропускная способность «умной» фабрики составляет до 70,4 Тбайт/с. Сама NVIDIA предлагает как новые системы DGX H100 (8 × H100, 2 × BlueField-3, 8 × ConnectX-7), так и SuperPOD-сборку из 32-х DGX, как раз с использованием NVLink и NVSwitch. Партнёры предложат HGX-платформы на 4 или 8 ускорителей. Для дальнейшего масштабирования SuperPOD и связи с внешним миром используются 400G-коммутаторы Quantum-2 (InfiniBand NDR). Сейчас NVIDIA занимается созданием своего следующего суперкомпьютера EOS, который будет состоять из 576 DGX H100 и получит FP64-производительность на уровне 275 Пфлопс, а FP16 — 9 Эфлопс. Компания надеется, что EOS станет самой быстрой ИИ-машиной в мире. Появится она чуть позже, как и сами ускорители, выход которых запланирован на III квартал 2022 года. NVIDIA представит сразу три версии. Две из них стандартные, в форм-факторах SXM4 (700 Вт) и PCIe-карты (350 Вт). А вот третья — это конвергентный ускоритель H100 CNX со встроенными DPU Connect-X7 класса 400G (подключение PCIe 5.0 к самому ускорителю) и интерфейсом PCIe 4.0 для хоста. Компанию ей составят 400G/800G-коммутаторы Spectrum-4. |
|