Материалы по тегу: h100

22.03.2023 [20:32], Алексей Степин

Экспортный китайский вариант NVIDIA H100 получил модельный номер H800

В связи с санкционными ограничениями некоторые разновидности сложных микроэлектронных чипов запрещено экспортировать в Китайскую Народную Республику. Однако производители находят выход. В частности, компания NVIDIA анонсировала экспортный вариант ускорителя H100, не нарушающий никаких санкций. Модельный номер у такого варианта изменён на H800.

Введённые правительством США в 2022 году санкции сделали «невыездными» два наиболее продвинутых продукта NVIDIA: A100 и H100. Такие процессоры сегодня являются основой наиболее динамично развивающейся вычислительной отрасли — нейросетевой. Именно на кластерах из таких ускорителей «натаскивают» мощные нейросети вроде ChatGPT и подобных.

 Ускоритель Hopper H100 в SXM-исполнении. Источник изображений здесь и далее: NVIDIA

Ускоритель Hopper H100 в SXM-исполнении. Источник изображений здесь и далее: NVIDIA

Ещё осенью прошлого года NVIDIA анонсировала A800 — экспортный вариант A100, не попадающий под ограничения за счёт некоторого снижения пропускной способности NVLink, с 600 до 400 Гбайт/с. Сейчас пришло время архитектуры Hopper, которая запущена в массовое производство. По аналогии с флагманом Ampere модернизированный чип получил модельный номер H800. Ограничения в нём реализованы схожим образом: как известно, NVLink в H100 имеет производительность 900 Гбайт/с в базовом SXM-варианте.

 H100 также существует в PCIe-варианте

H100 также существует в PCIe-варианте

Версия H800 использует примерно половину этого потенциала, что, впрочем, не делает её в Китае менее популярной: новинка уже используется китайскими облачными гигантами, такими, как Alibaba, Baidu и Tencent. Есть ли у H800 другие отличия от H100, не говорится — NVIDIA пока отказывается предоставлять такую информацию. Достоверно известно лишь то, что они полностью соответствуют всем санкционным ограничениям. Интересно, появится ли в будущем вариант H800 NVL на базе NVIDIA H100 NVL.

Постоянный URL: http://servernews.kz/1083837
21.03.2023 [19:45], Игорь Осколков

Толстый и тонкий: NVIDIA представила самый маленький и самый большой ИИ-ускорители L4 и H100 NVL

На весенней конференции GTC 2023 компания NVIDIA представила два новых ИИ-ускорителя, ориентированных на инференес: неприличной большой H100 NVL, фактически являющийся парой обновлённых ускорителей H100 в формате PCIe-карты, и крошечный L4, идущий на смену T4.

 Изображения: NVIDIA

Изображения: NVIDIA

NVIDIA H100 NVL действительно выглядит как пара H100, соединённых мостиками NVLink. Более того, с точки зрения ОС они выглядят как пара независимых ускорителей, однако ПО воспринимает их как единое целое, а обмен данными между двумя картам идёт в первую очередь по мостикам NVLink (600 Гбайт/с). Новинка создана в первую очередь для исполнения больших языковых ИИ-моделей, в том числе семейства GPT, а не для их обучения.

 NVIDIA H100 NVL

NVIDIA H100 NVL

Однако аппаратно это всё же не просто пара обычных H100 PCIe. По уровню заявленной производительности NVL-вариант вдвое быстрее одиночного ускорителя H100 SXM, а не PCIe — 3958 и 7916 Тфлопс в разреженных (в обычных показатели вдвое меньше) FP16- и FP8-вычислениях на тензорных ядрах соответственно, что в 2,6 раз больше, чем у H100 PCIe. Кроме того, NVL-вариант получил сразу 188 Гбайт HBM3-памяти с суммарной пропускной способностью 7,8 Тбайт/с.

NVIDIA утверждает, что форм-фактор H100 NVL позволит задействовать новинку большему числу пользователей, хотя четыре слота и TDP до 800 Вт подойдут далеко не каждой платформе. NVIDIA H100 NVL станет доступна во второй половине текущего года. А вот ещё одну новинку, NVIDIA L4 на базе Ada, в ближайшее время можно будет опробовать в облаке Google Cloud Platform, которое первым получило этот ускоритель. Кроме того, он же будет доступен в рамках платформы NVIDIA Launchpad, да и ключевые OEM-производители тоже взяли его на вооружение.

 NVIDIA L4

NVIDIA L4

Сама NVIDIA называет L4 поистине универсальным серверным ускорителем начального уровня. Он вчетверо производительнее NVIDIA T4 с точки зрения графики и в 2,7 раз — с точки зрения инференса. Маркетинговые упражнения компании при сравнении L4 с CPU оставим в стороне, но отметим, что новинка получила новые аппаратные ускорители (де-)кодирования видео и возможность обработки 130 AV1-потоков 720p30 для мобильных устройств. С L4 возможны различные сценарии обработки видео, включая замену фона, AR/VR, транскрипцию аудио и т.д. При этом ускорителю не требуется дополнительное питание, а сам он выполнен в виде HHHL-карты.

Постоянный URL: http://servernews.kz/1083759
21.03.2023 [19:15], Сергей Карасёв

NVIDIA представила систему DGX Quantum для гибридных квантово-классических вычислений

Компания NVIDIA в партнёрстве с Quantum Machines анонсировала DGX Quantum — первую систему, объединяющую GPU и квантовые вычисления. Решение использует новую открытую программную платформу CUDA Quantum. Утверждается, что система предоставляет революционно архитектуру для исследователей, работающими с гибридными вычислениями с низкой задержкой.

NVIDIA DGX Quantum объединяет средства ускоренных вычислений на базе Grace Hopper (Arm-процессор + ускоритель H100), модели программирования с открытым исходным кодом CUDA Quantum и передовую квантовую управляющую платформу Quantum Machines OPX+. Такая комбинация позволяет создавать ресурсоёмкие приложения, сочетающие квантовые вычисления с современными классическими вычислениями. При этом в числе прочего обеспечивается работа гибридных алгоритмов и коррекция ошибок.

 Источник изображения: NVIDIA

Источник изображения: NVIDIA

Представленное решение предполагает соединение Grace Hopper и Quantum Machines OPX+ посредством интерфейса PCIe. Это обеспечивает задержку менее микросекунды между ускорителем и блоками квантовой обработки (QPU). Отмечается, что OPX+ — это универсальная система квантового управления. Таким образом, можно максимизировать производительность QPU и предоставить разработчикам новые возможности при использовании квантовых алгоритмов. Системы Grace Hopper и OPX+ можно масштабировать в соответствии с потребностями — от QPU с несколькими кубитами до суперкомпьютера с квантовым ускорением.

 Источник изображения: NVIDIA

Источник изображения: NVIDIA

О намерении интегрировать CUDA Quantum в свои платформы уже заявили компании по производству квантового оборудования Anyon Systems, Atom Computing, IonQ, ORCA Computing, Oxford Quantum Circuits и QuEra, разработчики ПО Agnostiq и QMware, а также некоторые суперкомпьютерные центры.

Постоянный URL: http://servernews.kz/1083710
22.03.2022 [18:40], Игорь Осколков

NVIDIA анонсировала 4-нм ускорители Hopper H100 и самый быстрый в мире ИИ-суперкомпьютер EOS на базе DGX H100

На GTC 2022 компания NVIDIA анонсировала ускорители H100 на базе новой архитектуры Hopper. Однако NVIDIA уже давно говорит о себе как создателе платформ, а не отдельных устройств, так что вместе с H100 были представлены серверные Arm-процессоры Grace, в том числе гибридные, а также сетевые решения и обновления наборов ПО.

 NVIDIA H100 (Изображения: NVIDIA)

NVIDIA H100 (Изображения: NVIDIA)

NVIDIA H100 использует мультичиповую 2.5D-компоновку CoWoS и содержит порядка 80 млрд транзисторов. Но нет, это не самый крупный чип компании на сегодняшний день. Кристаллы новинки изготавливаются по техпроцессу TSMC N4, а сопровождают их — впервые в мире, по словам NVIDIA — сборки памяти HBM3 суммарным объёмом 80 Гбайт. Объём памяти по сравнению с A100 не вырос, зато в полтора раза увеличилась её скорость — до рекордных 3 Тбайт/с.

 NVIDIA H100 (SXM)

NVIDIA H100 (SXM)

Подробности об архитектуре Hopper будут представлены чуть позже. Пока что NVIDIA поделилась некоторыми сведениями об особенностях новых чипов. Помимо прироста производительности от трёх (для FP64/FP16/TF32) до шести (FP8) раз в сравнении с A100 в Hopper появилась поддержка формата FP8 и движок Transformer Engine. Именно они важны для достижения высокой производительности, поскольку само по себе четвёртое поколение ядер Tensor Core стало втрое быстрее предыдущего (на всех форматах).

 NVIDIA H100 CNX (PCIe)

NVIDIA H100 CNX (PCIe)

TF32 останется форматом по умолчанию при работе с TensorFlow и PyTorch, но для ускорения тренировки ИИ-моделей NVIDIA предлагает использовать смешанные FP8/FP16-вычисления, с которыми Tensor-ядра справляются эффективно. Хитрость в том, что Transformer Engine на основе эвристик позволяет динамически переключаться между ними при работе, например, с каждым отдельным слоем сети, позволяя таким образом добиться повышения скорости обучения без ущерба для итогового качества модели.

На больших моделях, а именно для таких H100 и создавалась, сочетание Transformer Engine с другими особенностями ускорителей (память и интерконнект) позволяет получить девятикратный прирост в скорости обучения по сравнению с A100. Но Transformer Engine может быть полезен и для инференса — готовые FP8-модели не придётся самостоятельно конвертировать в INT8, движок это сделает на лету, что позволяет повысить пропускную способность от 16 до 30 раз (в зависимости от желаемого уровня задержки).

Другое любопытное нововведение — специальные DPX-инструкции для динамического программирования, которые позволят ускорить выполнение некоторых алгоритмов до 40 раз в задачах, связанных с поиском пути, геномикой, квантовыми системами и при работе с большими объёмами данных. Кроме того, H100 получили дальнейшее развитие виртуализации. В новых ускорителях всё так же поддерживается MIG на 7 инстансов, но уже второго поколения, которое привнесло больший уровень изоляции благодаря IO-виртуализации, выделенным видеоблокам и т.д.

Так что MIG становится ещё более предпочтительным вариантом для облачных развёртываний. Непосредственно к MIG примыкает и технология конфиденциальных вычислений, которая по словам компании впервые стала доступна не только на CPU. Программно-аппаратное решение позволяет создавать изолированные ВМ, к которым нет доступа у ОС, гипервизора и других ВМ. Поддерживается сквозное шифрование при передаче данных от CPU к ускорителю и обратно, а также между ускорителями.

Память внутри GPU также может быть изолирована, а сам ускоритель оснащается неким аппаратным брандмауэром, который отслеживает трафик на шинах и блокирует несанкционированный доступ даже при наличии у злоумышленника физического доступа к машине. Это опять-таки позволит без опаски использовать H100 в облаке или в рамках колокейшн-размещения для обработки чувствительных данных, в том числе для задач федеративного обучения.


NVIDIA HGX H100

Но главная инновация — это существенное развитие интерконнекта по всем фронтам. Суммарная пропускная способность внешних интерфейсов чипа H100 составляет 4,9 Тбайт/с. Да, у H100 появилась поддержка PCIe 5.0, тоже впервые в мире, как утверждает NVIDIA. Однако ускорители получили не только новую шину NVLink 4.0, которая стала в полтора раза быстрее (900 Гбайт/с), но и совершенно новый коммутатор NVSwitch, который позволяет напрямую объединить между собой до 256 ускорителей! Пропускная способность «умной» фабрики составляет до 70,4 Тбайт/с.

Сама NVIDIA предлагает как новые системы DGX H100 (8 × H100, 2 × BlueField-3, 8 × ConnectX-7), так и SuperPOD-сборку из 32-х DGX, как раз с использованием NVLink и NVSwitch. Партнёры предложат HGX-платформы на 4 или 8 ускорителей. Для дальнейшего масштабирования SuperPOD и связи с внешним миром используются 400G-коммутаторы Quantum-2 (InfiniBand NDR). Сейчас NVIDIA занимается созданием своего следующего суперкомпьютера EOS, который будет состоять из 576 DGX H100 и получит FP64-производительность на уровне 275 Пфлопс, а FP16 — 9 Эфлопс.

Компания надеется, что EOS станет самой быстрой ИИ-машиной в мире. Появится она чуть позже, как и сами ускорители, выход которых запланирован на III квартал 2022 года. NVIDIA представит сразу три версии. Две из них стандартные, в форм-факторах SXM4 (700 Вт) и PCIe-карты (350 Вт). А вот третья — это конвергентный ускоритель H100 CNX со встроенными DPU Connect-X7 класса 400G (подключение PCIe 5.0 к самому ускорителю) и интерфейсом PCIe 4.0 для хоста. Компанию ей составят 400G/800G-коммутаторы Spectrum-4.

Постоянный URL: http://servernews.kz/1062434
Система Orphus