Материалы по тегу: бенчмарк
11.09.2023 [19:00], Сергей Карасёв
Много памяти, быстрая шина и правильное питание: гибридный суперчип GH200 Grace Hopper обогнал H100 в ИИ-бенчмарке MLPerf InferenceКомпания NVIDIA сообщила о том, что суперчип NVIDIA GH200 Grace Hopper и ускоритель H100 лидируют во всех тестах производительности ЦОД в бенчмарке MLPerf Inference v3.1 для генеративного ИИ, который включает инференс-задачи в области компьютерного зрения, распознавания речи, обработки медицинских изображений, а также работу с большими языковыми моделями (LLM). Ранее NVIDIA уже объявляла о рекордах H100 в новом бенчмарке MLPerf. Теперь говорится, что суперчип GH200 Grace Hopper впервые прошёл все тесты MLPerf. Вместе с тем системы, оснащенные восемью ускорителями H100, обеспечили самую высокую пропускную способность в каждом тесте MLPerf Inference. Решения NVIDIA прошли обновленное тестирование в области рекомендательных систем (DLRM-DCNv2), а также выполнили первый эталонный тест GPT-J — LLM с 6 млрд параметров. Примечательно, что GH200 оказался до 17 % быстрее H100, хотя чип самого ускорителя в обоих продуктах один и тот же. NVIDIA объясняет это несколько факторами. Во-первых, у GH200 больше набортной памяти — 96 Гбайт против 80 Гбайт. Во-вторых, ПСП составляет 4 Тбайт/с, а сам чип является гибридным, так что для передачи данных между LPDDR5x и HBM3 не используется PCIe. В-третьих, GH200 при низкой нагрузке на CPU умеет отдавать часть энергии ускорителю, оставаясь в заданных рамках энергопотребления. Правда, в тестах GH200 работал на полную мощность, т.е. с TDP на уровне 1 кВт (UPD: NVIDIA уточнила, что реально потребление GH200 под полной нагрузкой составляет 750–800 Вт). ![]() Источник изображений: NVIDIA Отдельно внимание уделено оптимизации ПО — на днях NVIDIA анонсировала открый программный инструмент TensorRT-LLM, предназначенный для ускорения исполнения LLM на продуках NVIDIA. Этот софт даёт возможность вдвое увеличить производительность ускорителя H100 в тесте GPT-J 6B (входит в состав MLPerf Inference v3.1). NVIDIA отмечает, что улучшение ПО позволяет клиентам с течением времени повышать производительность ИИ-систем без дополнительных затрат. Также отмечается, что модули NVIDIA Jetson Orin благодаря новому ПО показали прирост производительности до 84 % на задачах обнаружения объектов по сравнению с предыдущим раундом тестирования MLPerf. Ускорение произошло благодаря задействованию Programmable Vision Accelerator (PVA), отдельного движка для обработки изображений и алгоритмов компьютерного зрения работающего независимо от CPU и GPU. Сообщается также, что ускоритель NVIDIA L4 в последних тестах MLPerf выполнил весь спектр рабочих нагрузок, показав отличную производительность. Так, в составе адаптера с энергопотреблением 72 Вт этот ускоритель демонстрирует в шесть раз более высокое быстродействие, нежели CPU, у которых показатель TDP почти в пять раз больше. Кроме того, NVIDIA применила новую технологию сжатия модели, что позволило продемонстрировать повышение производительности в 4,4 раза при использовании BERT LLM на ускорителе L4. Ожидается, что этот метод найдёт применение во всех рабочих нагрузках ИИ. В число партнёров при проведении тестирования MLPerf вошли поставщики облачных услуг Microsoft Azure и Oracle Cloud Infrastructure, а также ASUS, Connect Tech, Dell Technologies, Fujitsu, Gigabyte, Hewlett Packard Enterprise, Lenovo, QCT и Supermicro. В целом, MLPerf поддерживается более чем 70 компаниями и организациями, включая Alibaba, Arm, Cisco, Google, Гарвардский университет, Intel, Meta✴, Microsoft и Университет Торонто.
06.09.2023 [19:20], Алексей Степин
Первые бенчмарки NVIDIA Grace Superchip: не хуже EPYC и быстрее Xeon, а по энергоэффективности намного лучше AMD и Intel144-ядерный Arm-процессор NVIDIA Grace Superchip был продемонстрирован публике ещё весной этого года на конференции GTC 2023. Несмотря на то, что технические характеристики этого решения известны уже давно, первые результаты тестирования компания решила опубликовать только сейчас, вероятно, с подачи Arm, которая готовится к IPO. Производство Grace Superchip уже запущено, а появления ОЕМ-систем на его базе следует ожидать уже во II квартале 2024 года. Напомним, Grace Superchip представляет собой сборку из двух чипов Grace, каждый из которых включает 72 ядра Arm Neoverse V2 (Arm v9) с поддержкой векторных расширений SVE2. Процессор умеет работать с форматами BF16/INT8 и развивает до 7,1 Тфлопс в режиме FP64. С точки зрения системы сборка представляется единым 144-ядерным процессором. ![]() Сборка Grace Superchip. Источник изображения: NVIDIA В качестве соперников Grace Superchip были избраны платформы на базе AMD EPYC Genoa 9654 (2 процессора, 192 ядра) и Intel Xeon Sapphire Rapids 8480+ (также 2 процессора, 112 ядер). Итог довольно любопытен: несмотря на заметное отставание в количестве ядер от системы AMD, решение NVIDIA сумело достичь паритета в подавляющем большинстве тестов, а в сценарии аналитики графов даже продемонстрировало 1,4-кратное превосходство. Возможно, тут новинке помогла мощная подсистема памяти: Grace Superchip оснащается набором чипов LPDDR5x объёмом 960 Гбайт с совокупной ПСП 1 Тбайт/с. Но куда интереснее результаты, приведённые к уровню энергопотребления — сборка Grace Superchip буквально разгромила решения на базе x86-64. Выигрыш в этом случае составил от 70 % до 150 %! Полученные результаты достаточно неплохо согласуются с официальными данными об энергопотреблении систем-участниц тестирования — это 720 и 700 Вт у решений AMD и Intel соответственно против 500 Вт у NVIDIA Grace Superchip. Если опубликованные сегодня результаты будут подтверждены независимыми тестами, можно говорить о появлении у серверных решений x86 серьёзнейшего конкурента. Впрочем, ценовая политика NVIDIA в отношении Grace Superchip пока остаётся тайной.
31.07.2023 [16:12], Алексей Степин
AVX-512 вдвое ускоряет AMD EPYC Bergamo, а Genoa-X выигрывают от большого кешаХотя реализация AVX-512 в процессорах AMD на базе микроархитектуры Zen 4 сомнительна — настоящих 512-битных регистров у этих процессоров нет и для этого в два этапа задействуются имеющиеся 256-битные, сама ситуация на рынке делает эти решения уникальными. Популярный ресурс Phoronix опубликовал новые тесты, в которых рассматривается выгода от включения поддержки AVX-512 в системах на базе AMD Bergamo. Также внимательно рассмотрен вопрос влияния на производительность большого кеша 3D V-Cache у новых EPYC Genoa-X. ![]() Поддержка AVX-512 может оказаться очень полезной процессору AMD EPYC. Источник здесь и далее: Phoronix Несмотря на то, что AVX-512 является детищем Intel, ситуация складывается довольно абсурдная: текущая серия Sapphire Rapids сильно отстаёт по количеству ядер от AMD Bergamo, а многоядерные (до 144 ядер) Xeon серии Sierra Forest, скорее всего, поддержки AVX-512/AVX10 не получат. Таким образом, AMD Bergamo с ядрами Zen 4c являются единственными в мире 128-ядерными процессорами с поддержкой 512-битных расширений. На примере AMD EPYC 9754 видно, что несмотря на отсутствие полноценных регистров такой ширины, выгода от активации AVX-512 может быть весьма существенной, в некоторых случаях практически двукратной, а в TensorFlow — даже шести- или десятикратной. ![]() По сводному результату видно, что активация AVX-512 даёт Bergamo двукратный прирост производительности, хотя, разумеется, в конечном итоге всё зависит от конкретной нагрузки. Что интересно, задействование 512-битных расширений практически не влияет на частотные характеристики процессора — в среднем, этот показатель оставался равен все тем же 2,9 ГГц, что и без AVX-512. А вот энергопотребление и тепловыделение в таком режиме заметно возрастают, однако не настолько, чтобы вызвать какие-либо проблемы с перегревом или активацию режима троттлинга, как в некоторых ранних моделях Intel Xeon с поддержкой AVX-512. ![]() А теперь перейдём к EPYC 9684X (Genoa-X) — также достаточно уникальному процессору, сочетающему в себе 96 ядер, AVX-512 и 3D V-Cache, доводящий общий объём кеша L3 до гигантского значения 1,1 Гбайт. В данном случае разница также сильно варьируется в зависимости от характера нагрузки, но в некоторых случаях может быть и двукратной. В среднем эффект выражается в 12 % приросте производительности, что также весьма неплохо. На тактовую частоту и уровень энергопотребления отключение 3D V-Cache влияния не оказывает. Таким образом становится очевидно, что AMD EPYC 9684X — процессор специфический, уступающий по количеству ядер Bergamo и заточенный исключительно под нагрузки, могущие эффективно использовать огромный объём кеша, такие, как OpenFOAM или OpenVINO.
19.07.2023 [22:03], Илья Коваль
Ядер много не бывает: первые тесты AMD EPYC Genoa-X и Bergamo показали почти безоговорочную победу над Intel Xeon Sapphire Rapids и Xeon MaxВ Сети появились первые тесты процессоров AMD EPYC Genoa-X и Bergamo, которые были представлены в конце мая. Первый из них является вариантом Genoa с 3D V-Cache объёмом 768 Мбайт в максимальной конфигурации с 96 ядрами, что в сумме даёт 1152 Мбайт L3-кеша на процессор. Второй же предлагает до 128 ядер Zen4c с пониженной частотой и урезанным кешем и оптимизирован для нужд гиперскейлеров. Так, согласно тестам Phoronix, в HPC- и ИИ-бенчмарках, на которые Genoa-X и ориентирован, 9684X в стандартном режиме в среднем обгоняет и обычные Genoa 9654 с «открученными» лимитами (cTDP 400 Вт), и Milan-X (7773X), и Xeon Sapphire Rapids (8490H), и Xeon Max (9480). Отдельно отмечается прирост производительности в сравнении с Milan-X, при этом разница между чипами составляет менее двух лет. Источник: Phoronix Что касается Intel Xeon Max, которые благодаря набортной памяти HBM2e объёмом 64 Гбайт как раз должны составлять конкуренцию Genoa-X в «тяжёлых» задачах, из-за значительного меньшего количества ядер тягаться с EPYC могут далеко не всегда и показывают хорошие результаты в режиме HBM-only (без системной DDR5). Но это касается только задач, которым хватает набортной памяти, и отдельных (пока редких) нагрузок, которые заранее оптимизированы для актуальной платформы Intel и, например, умеют задействовать инструкции AMX для ИИ-вычислений. Источник: Phoronix В этих же тестах был ещё один участник — EPYC 9754 (Bergamo). В нетипичных для него нагрузках он всё равно показал достойный результат, всё же 128 ядер — это 128 ядер. В ещё одном тестировании Phoronix он обогнал всех прочих участников, показав прирост на уровне 20 % в сравнении со старшим Genoa(-X) в нагрузках, которые хорошо распараллеливаются. При этом он оказался энергоэффективнее и своих собратьев с ядрами Zen4, и Intel Xeon. Так что этот чип действительно будет интересен облачным провайдерам, но не только им. Это отлично решение для рендера и некоторых расчётных нагрузок. Intel сейчас не в состоянии противопоставить что-либо Bergamo, но гораздо интереснее увидеть сравнение новинок с AmpereOne. Пока что ServeTheHome отмечает значительное превосходство Bergamo над процессорами Ampere Altra Max, которые тоже имеют 128 ядер, но Arm и без SMT.
18.07.2023 [22:14], Владимир Мироненко
MLCommons анонсировал бенчмарк MedPerf для медицинского ИИКонсорциум MLCommons объявил о доступности открытого бенчмарка MedPerf, с помощью которого компании смогут безопасно проверять ИИ-модели для медицинской сферы на реальных данных без раскрытия последних, пишет SiliconANGLE. MedPerf поможет «катализировать более широкое внедрение медицинского ИИ», что приведёт к более эффективной и рентабельной клинической практике. ИИ-бенчмарки MLPerf консорциума MLCommons уже стали отраслевым стандартом для тестирования и проверки моделей ИИ. Согласно статье, подготовленной MLCommons Medical Working Group для журнала Nature Machine Intelligence, медицинский ИИ обладает огромным потенциалом для развития здравоохранения. Для раскрытия этого потенциала необходим систематический количественный метод оценки эффективности ИИ-моделей с помощью крупномасштабных гетерогенных датасетов, которые могут охватывать широкий спектр групп пациентов. По словам создателей, MedPerf как раз предлагает последовательную и строгую методологию для количественной оценки производительности медицинских ИИ-моделей для реальных приложений. При этом MedPerf обеспечивает полную конфиденциальность данных и защиту интеллектуальной собственности каждой модели, гарантируя, что любые используемые данные никогда не покинут системы провайдера медицинских сервисов. Кроме того, используемый метод совместного проектирования поддерживает нейтральный и научный подход к клинической проверке ИИ и позволяет выявить новые варианты приложений, где ИИ может повысить клиническую эффективность. MLCommons заявил, что его бенчмарки оказали положительное влияние на развитие технологий ИИ во многих отраслях, и что предлагаемый бенчмарк для медицинского ИИ поможет ускорить развитие отрасли здравоохранения. В частности, MedPerf поможет ускорить внедрение ИИ в медицине, предоставив разработчикам лучший способ обслуживания недостаточно представленных групп пациентов. MedPerf уже прошёл валидацию в рамках Federated Tumor Segmentation Challenge и четырёх других академических пилотных исследований.
09.07.2023 [18:07], Алексей Степин
AMX и HBM2e обеспечивают Intel Xeon Max серьёзное преимущество в некоторых ИИ-нагрузкахВ Сети продолжают появляться новые данные о производительности процессоров Intel Xeon Max с набортной памятью HBM2e объёмом 64 Гбайт. На этот раз ресурс Phoronix опубликовал сравнительные результаты тестирования двухпроцессорных платформ Xeon Max 9480 в сравнении с решениями AMD EPYC 9004. Не секрет, что процессоры Intel Xeon существенно уступают по максимальному количеству ядер решениям AMD EPYC уже давно — даже у обычных Sapphire Rapids их не более 60, а у Xeon Max и вовсе в максимальной конфигурации лишь 56 ядер. Однако Intel в этом поколении старается взять своё не числом, а уменьем — поддержкой новых расширений, в частности, AMX. В новом тестировании ИИ-нагрузок, опубликованном Phoronix, приняла участие двухпроцессорная система на базе Xeon Max 9480 в различных режимах (только с HBM, без HBM или с HBM в режиме кеширования), а также две двухпроцессорные системы AMD на базе EPYC 9554 (128 ядер) и EPYC 9654 (192 ядра). В качестве бенчмарков были выбраны фреймворки OpenVINO (оптимизирован для AMX) и ONNX (без глубокой оптимизации). ![]() Источник здесь и далее: Phoronix В ряде тестов OpenVINO наивысший результат продемонстрирован платформой Xeon Max в режиме HBM Only, несмотря на огромное отставание по количеству ядер. И худший же результат принадлежит тоже Xeon Max, но при отключении HBM и переходу к AVX512 FP16 без использования AMX. Иногда AMD удаётся взять реванш благодаря количеству ядер, причём отключение HBM2e не всегда спасает «красных» — с помощью AMX «синие» продолжают довольно уверенно лидировать во многих тестах. Тестирование в ONNX Runtime 1.14 на базе языковой модели GPT-2 также показало, что Xeon Max опережают EPYC Genoa — но серьёзный выигрыш достигается только при использовании HBM. ![]() Даже без HBM поддержка AMX помогает Xeon Max показать достойный результат Подход Intel демонстрирует отличные результаты: в ряде случаев переход от AVX512 к AMX позволяет поднять производительность в 2,5 раза. Благодаря HBM2e можно получить ещё около 25 %, а в целом прирост может достигать 3,13 раз. Впрочем, у AMD в запасе есть EPYC Genoa-X с огромным кешем 3D V-Cache, так что стоит подождать следующего раунда этой битвы.
13.07.2022 [16:13], Алексей Степин
128-ядерный Arm-процессор Alibaba T-Head Yitian 710 показал отличные результаты в SPEC CPU2017Не секрет, что китайские гиганты, такие, как Huawei и Alibaba Cloud, разрабатывают собственные серверные процессоры на базе архитектуры Arm. Однако информации об этих чипах, как правило, не очень много и пользоваться общепринятыми на западе тестами и рейтингами разработчики не спешат, что, к слову, характерно и для китайских суперкомпьютеров. Alibaba Cloud представила чип Yitian 710 ещё осенью прошлого года. Этот процессор построен на базе архитектуры Armv9 и максимально может иметь 128 ядер с частотой до 3,2 ГГц. Однако результаты проверки чипа в популярном тесте SPEC CPU2017 были опубликованы только сейчас. Процессор тестировался в составе референс-сервера Panjiu. Применялась 128-ядерная версия с частотой 2,75 ГГц, 1 Мбайт кеша L2 на ядро и 64 Мбайт кеша L3 на кристалл (128 Мбайт на сборку). Последнее позволяет говорить о том, что Alibaba также использует в своих процессорах чиплетную компоновку. Результаты оказались существенно более высокими, нежели у Ampere Altra Q80-33; правда, стоит сделать скидку на то, что у Ampere использовалась 80-ядерная версия, а не более новая 128-ядерая Altra Max. Но в аутсайдерах оказался также и AMD EPYC 7773X (64 ядер/128 потоков, 2,2-3,5 ГГц, 768 Мбайт L3), показавший 440 очков против 510 у Yitian 710. Увеличенный объём кеша не слишком помог детищу «красных». Таким образом, процессор на базе архитектуры Armv9 занял первое место там, где традиционно господствовали решения с архитектурой x86 — достаточно взглянуть на Топ-20 в рейтинге CPU2017 Integer. Можно сказать, что 128-ядерный процессор не вполне корректно сравнивать с 64-ядерным с поддержкой SMT, однако если технологии и архитектура позволяют разместить вдвое больше полноценных ядер в сопоставимом по размеру с AMD EPYC корпусе, так ли это важно? К сожалению, пока речь идёт только о целочисленных вычислениях. По неизвестной причине, Alibaba Cloud не опубликовала результаты CPU2017 Floating Point, где сравнение вышло бы существенно интереснее. В любом случае, монополия AMD на первые места пошатнулась; что же касается Intel, то в классе однопроцессорных систем самым мощным вариантом является 36-ядерный Xeon Platinum 8351N, который заведомо проиграет 64-128 ядерным монстрам AMD, Ampere, а теперь уже и Alibaba Cloud. |
|