Материалы по тегу: omi

17.08.2020 [15:32], Алексей Степин

Подробности о процессорах IBM POWER10: SMT8, OMI DDR5, PCIe 5.0 и PowerAXON 2.0

Мы внимательно следим за судьбой и развитием архитектуры POWER, которая наряду с ARM представляет определённую угрозу для x86 в сфере серверов и суперкомпьютеров — недаром одна из самых мощных в мире HPC систем, суперкомпьютер Ок-Риджской национальной лаборатории Summit, использует процессоры POWER9.

Ранее ожидалось что по ряду причин выход следующей в семействе архитектуры, POWER10, откладывается до 2021 года, хотя IBM и продвигала активно новые решения вроде универсального стандарта оперативной памяти OMI. Однако официальный анонс IBM POWER10 состоялся сегодня, а немецкий портал Hardwareluxx выложил слайды презентации компании.

Как компания уже отмечала ранее, она делает упор на большие системы и гибридные облака. С учётом этих тенденций и были разработаны новые процессоры. Поскольку в крупных облачных ЦОД упаковка вычислительных плотностей достигает уже невиданного ранее уровня, всё острее встаёт вопрос с энергоэффективностью и отводом тепла. Но именно здесь, как считает IBM, POWER10 и должен показать себя с наилучшей стороны — новые процессоры производятся с использованием 7-нм техпроцесса и могут демонстрировать трёхкратное преимущество в энергоэффективности в сравнении с POWER9.

POWER10 — первый коммерческий процессор IBM, использующий нормы производства 7 нм; любопытно, что теперь Intel отстаёт не только от AMD, которая стала пионером в использовании столь тонкого техпроцесса в «крупных» серверных процессорах, но и от IBM. В отличие от AMD EPYC, производимых на мощностях TSMC, новинки IBM «куются» в полупроводниковых кузнях Samsung. Площадь кристалла, состоящего из 18 миллиардов транзисторов, у новых процессоров достигает 602 мм2, что меньше, чем у новейших графических ядер, но всё равно цифра довольно солидная.

Техпроцесс POWER10 является совместной разработкой Samsung и IBM. В нём реализованы некие особенности, которые, предположительно, должны позитивно сказаться на характеристиках отдельных транзисторов. Не забыта и мода на установку нескольких кристаллов в один корпус: POWER10 доступны как в классическом варианте (SCM), так и в виде сборки из двух кристаллов (DCM), так что для каждого сценария использования можно выбрать подходящий вариант. В варианте SCM тактовая частота ядер составляет 4 ГГц, количество процессорных разъёмов в системе может достигать 16. В версии DCM частота снижена до 3,5 ГГц.

Базовый кристалл POWER10 имеет 16 вычислительных ядер, хотя используется из них только 15, каждое ядро дополнено 2 Мбайт кеша L2, а общий объём кеша L3 может достигать внушительных 120 Мбайт. Степень параллелизма была увеличена с SMT4 до SMT8, так что процессор может исполнять одновременно до 120 потоков, хотя, естественно, не в любой задаче такое распараллеливание ресурсов ядер будет эффективным. Производительность блоков SIMD была существенно увеличена, они вдвое быстрее аналогичных блоков POWER9, а на матричных операциях — быстрее в четыре раза.

За общение процессора с «внешним миром» отвечают интерфейсы PowerAXON 2.0 и PCI Express 5.0, в первом случае поддерживается открытый стандарт OpenCAPI, во втором реализовано 64 линии со скоростью 32 ГТ/с на линию, как и предписано стандартом. Компоновка связей у DCM и SCM разная. В первом случае сокетов может быть только 4, зато используется топология «каждый с каждым», а вот в 16-сокетном варианте SCM «по диагонали» между собой процессоры напрямую не общаются.

Интерфейс PowerAXON универсален, он использовался, в числе прочего, для реализации протокола NVLink для подключения ускорителей на базе графических процессоров NVIDIA. Проблем с пропускной способностью быть не должно, у каждого процессора в системе PowerAXON обеспечивает до 1 Тбайт/с. Кроме подключения ускорителей и общения процессоров между собой, у PowerAXON есть и ещё одно интересное и важное применение, о котором ниже.

О преимуществах унифицированного интерфейса OMI, позволяющего «малой кровью» модернизировать подсистему памяти, мы уже рассказывали читателям ранее. В новом процессоре эти возможности задействованы полностью. Каждый базовый кристалл POWER10 имеет 16 линков OMI x8, общая пропускная способность достигает 1 Тбайт/с. Латентность, разумеется, возросла, поскольку контроллер DDR у OMI, по сути, внешний, но прирост небольшой и составляет менее 10 наносекунд.

Универсальность и возможность модернизации этот недостаток искупают с лихвой. В текущем варианте пиковая пропускная способность достигает 410 Гбайт/с на разъём, объём — 4 Тбайт на разъём, однако с внедрением более быстрых типов памяти (DDR5, GDDR или даже HBM) может быть достигнута цифра 800 Гбайт/с на разъём. Отдельно упоминается возможность работы с SCM, но без конкретики. На данный момент такая память массово представлена только 3D XPoint в виде Intel Optane DCPMM.

Любопытна технология Memory Clustering. С помощью PowerAXON система может обращаться к оперативной памяти в другой системе, как к собственной. Латентность при этом составляет 50 ‒ 100 нс, для систем типа NUMA совсем немного. Общий объем на одну систему POWER10 может достигать 2 Пбайт; с учётом применения систем IBM для запуска таких «пожирателей памяти», как SAP HANA такие объемы очень к месту.

Следуя текущей моде на машинное обучение, разработчики реализовали в POWER10 развитую поддержку форматов вычислений, отличных от традиционных FP32/64. Блок плавающих вычислений в новом процессоре носит название Matrix Math Accelerator. В сравнении с POWER9 он быстрее в 10, 15 и 20 раз в режимах FP32, BFloat16 и INT8 соответственно. Иными словами, именно для инференс-систем POWER10 станет хорошим выбором.

Поскольку одним из применений POWER10 компания видит облачные комплексы, серьёзное внимание уделено обеспечению безопасности. Новые процессоры поддерживают полное шифрование содержимого оперативной памяти, а для ускорения криптографических процедур в их составе есть соответствующие аппаратные блоки, причём не только для широко распространённого стандарта AES. Они достаточно гибки, чтобы поддерживать и шифрование будущего класса quantum safe. Также поддерживается защита и изоляция контейнеров на аппаратном уровне. Успешная атака на один контейнер в пределах машины не означает и успеха с другими контейнерами.

В качестве программной основы IBM предлагает Red Hat OpenShift, и архитектура POWER10 была соответствующим образом оптимизирована, чтобы показывать наилучшие результаты именно с этой средой. В целом, можно уверенно сказать: новые процессоры Голубого Гиганта получились интересными и весьма достойно выглядящими решениями даже на фоне успеха AMD EPYC.

Официальный анонс состоялся сегодня, но развёртывание массового производства должно занять определённое время, так что появления первых серверов на базе IBM POWER10 стоит ожидать не ранее начала следующего, 2021 года. А планы компании говорят о том, что POWER11 уже находится в разработке.

Постоянный URL: http://servernews.kz/1018413
04.11.2019 [21:00], Алексей Степин

IBM продвигает открытый стандарт оперативной DDIMM-памяти OMI для серверов

Практически у всех современных процессоров контроллер памяти давно и прочно является частью самого ЦП, будь то монолитный кристалл или чиплетная сборка. Но не всегда подобная монолитность является плюсом — к примеру, она усложняет задачу увеличения количества каналов доступа к памяти.

Таких каналов уже 8 и существуют проекты процессоров с 10 каналами памяти. Но это усложняет как сами ЦП, так и системные платы, ведь только на подсистему памяти, без учёта интерфейса PCI Express, может уйти 300 и более контактов, которые ещё требуется корректно развести и подключить.

 Организация подсистемы памяти у POWER8

Организация подсистемы памяти у POWER8

У IBM есть ответ, и заключается он в переносе части функций контроллера памяти на сторону модулей DIMM. Сам интерфейс между ЦП и модулями памяти становится последовательным и предельно унифицированным. Похожая схема использовалась в стандарте FB-DIMM, аналогичную компоновку применила и сама IBM в процессорах POWER8 и POWER9 в варианте Scale-Up.

 Роль и возможности буфера Centaur у POWER8

Роль и возможности буфера Centaur у POWER8

Контроллер памяти у этих процессоров упрощён, в нём отсутствует контроллер физического уровня (PHY). Его задачи возложены на чип-буфер Centaur, который посредством одноимённого последовательного интерфейса и связывается с процессором на скорости 28,8 Гбайт/с.

Контроллеров интерфейса Centaur в процессорах IBM целых восемь, что дает ПСП в районе 230 Гбайт/с. За счёт выноса ряда функций в чипы-буфера удалось сократить площадь кристалла, и без того немалую (свыше 700 мм2), но за это пришлось заплатить увеличением задержек в среднем на 10 нс. Частично это сглажено за счёт наличия в составе Centaur кеша L4.

 Сравнительные размеры модулей Centaur, RDIMM и OMI DDIMM

Сравнительные размеры модулей Centaur, RDIMM и OMI DDIMM

Стандарт не является открытым, но IBM предлагает ему на смену полностью открытый вариант под названием Open Memory Interface (OMI). В его основу положена семантика и протоколы, описанные в стандарте OpenCAPI 3.1, а физический уровень представлен шиной BlueLink (25 Гбит/с на линию), которая уже используется для реализации NVLink и OpenCAPI.

Реализация OMI проще Centaur, что позволяет сделать чип-буфер более компактным и выделяющим меньше тепла. Но все преимущества сохраняются: так, число контактов процессора, отвечающих за интерфейс памяти, можно снизить с примерно 300 до 75, поскольку посылаются только простые команды загрузки и сохранения данных. Вся реализация физического интерфейса осуществляется силами чипа-компаньона OMI, и в нём же может находиться дополнительный кеш.

 Модули OMI DDIMM станут стандартом JEDEC

Модули OMI DDIMM станут стандартом JEDEC

Помимо экономии контактов есть и ещё одна выгода: можно реализовать любой тип памяти, будь то DDR, GDDR и даже NVDIMM — вся PHY-часть придётся на различные варианты чипов OMI, но со стороны стандартного разъёма любой модуль OMI будет выглядеть одинаково. Сейчас взят прицел на реализацию модулей с памятью DDR5.

При использовании существующих чипов DDR4 система с интерфейсом OMI может достичь совокупной ПСП порядка 650 Гбайт/с. Дополнительные задержки составят 5 ‒ 10 нс для RDIMM и лишь 4 нс для LRDIMM. Из всех соперников технологии на такое способны только сборки HBM, которые в силу своей природы имеют ограниченную ёмкость, дороги в реализации и не могут быть вынесены с общей с ЦП подложки.

 Новый стандарт упростит процессоры и позволит увеличить ёмкость подсистемы памяти

Новый стандарт упростит процессоры и позволит увеличить ёмкость подсистемы памяти

Чипы-буферы OMI можно разместить как на модуле памяти, так и на системной плате. Разумеется, для стандартизации выбран первый вариант. В нём предусмотрено 84 контакта на модуль, сами же модули получили название Dual-Inline Memory Module (DDIMM).

DDIMM вышли существенно компактнее своих традиционных собратьев: ширина модуля сократилась со 133 до 85 мм. Реализация буфера OMI ↔ DDR4 уже существует в кремнии: компания Microsemi продемонстрировала чип SMC 1000 (PM8596), поддерживающего 8 линий OMI со скоростью 25 Гбит/с каждая. Допустима также работа в режиме 4 × 1 с вдвое меньшей общей пропускной способностью.

 DDIMM существенно компактнее классических модулей памяти

DDIMM: меньше ширина, проще разъём

Со стороны чипов памяти SMC 1000 имеет стандартный 72-битный интерфейс с ECC и поддержкой различных комбинаций DRAM и NAND-устройств. Тактовая частота DRAM — до 3,2 ГГц, высота модуля зависит от количества и типов устанавливаемых чипов.

В случае одиночной высоты модули могут иметь ёмкость до 128 Гбайт, двойная высота позволит создать DDIMM объёмом свыше 256 Гбайт. Сам чип SMC 1000 невелик, всего 17 × 17 мм, а невысокое тепловыделение гарантирует отсутствие проблем с перегревом, свойственных FB-DIMM.

 Процессоры IBM POWER9 AIO дополнили существующую серию

Процессоры IBM POWER9 AIO дополнили существующую серию

Первыми процессорами с поддержкой OMI стали новые POWER9 версии Advanced I/O (AIO), дополнившие семейства Scale Up (SC) и Scale Out (SO). В них реализовано 16 каналов OMI по 8 линий каждый (до 650 Гбайт/с суммарно), а также новые версии интерфейсов NVLink (возможно, 3.0) и OpenCAPI 4.0. Количество линий PCI Express 4.0 по-прежнему составляет 48.

Шина IBM BlueLink была переименована в PowerAXON. За счёт её использования в системах на базе процессоров POWER возможна реализация 16-сокетных систем без применения дополнительной логики. Максимальное количество ядер у POWER9 AIO равно 24, с учётом SMT4 это даёт 96 исполняемых потоков. Имеется также кеш L3 типа eDRAM объёмом 120 Мбайт. Техпроцесс остался прежним, это 14-нм FinFET.

 Архитектура подсистем памяти у семейства IBM POWER9

Архитектура подсистем памяти у семейства IBM POWER9

Поставки POWER9 AIO начнутся в этом году, цены неизвестны, но с учётом 8 миллиардов транзисторов и кристалла площадью 728 мм2 они не могут быть низкими. Однако без OMI эти процессоры были бы ещё более дорогими. В комплект поставки входит и чип-буфер OMI, правда, не самая быстрая версия с пропускной способностью на уровне 410 Гбайт/с. Задел для модернизации есть, и для расширения ПСП достаточно будет заменить модули DDIMM на более быстрые варианты.

 Сравнительная таблица существующих и будущих версий OpenCAPI

Сравнительная таблица существующих и будущих версий OpenCAPI

Следующее поколение процессоров IBM, POWER10, появится только в 2021 году. К этому времени ожидается принятие стандарта OMI на рынке высокопроизводительных многопроцессорных систем. Попутно IBM готовит новые версии OpenCAPI, не привязанные к архитектуре POWER, а значит, путь к OMI будет открыт и другим вендорам.

Постоянный URL: http://servernews.kz/996907

Входит в перечень общественных объединений и религиозных организаций, в отношении которых судом принято вступившее в законную силу решение о ликвидации или запрете деятельности по основаниям, предусмотренным Федеральным законом от 25.07.2002 № 114-ФЗ «О противодействии экстремистской деятельности»;

Система Orphus